O Slick Holstein como uma alternativa para lidar com o estresse por calor em operações de laticínios tropicais

Palavras-chave: Holstein, gene slick, mudança climática, gado leiteiro

Resumo

O gado crioulo porto-riquenho é portador do gene Slick (SL) que resulta em uma pelagem curta e brilhante que lhe confere melhor tolerância ao calor, o que o torna um valioso recurso genético em programas de pecuária leiteira com o objetivo de aumentar a resiliência ao calor. O gene SL faz parte do pool genético do gado leiteiro porto-riquenho há tempo suficiente e tem rebanhos de gado SL Holstein registrados com porcentagens de ancestralidade> 93%. Avaliaram-se a produção de leite ao longo do ciclo de lactação e os intervalos de partos de vacas Holandesas registradas na leiteria El Remanso em Porto Rico. Os dados produtivos e reprodutivos foram obtidos no Dairy Records Management System (www.drms.org), para comparar a produção de 17 vacas Holstein SL registradas com 68 Holstein selvagem fenótipo (WT). Proc GLIMMIX do SAS (SAS University Edition, 2018) e um teste de Tukey foram usados ​​para analisar a produção de leite durante o período quente usando um modelo que incluiu genótipo (SL e WT), estágio de lactação e número de lactação como efeitos fixos. O teste de Tukey também foi realizado comparando o intervalo de partos (IC) entre 4-12 SL e 4-12 WT com os dados de 2013-2016 (n varia de acordo com o ano). A produção média do SL foi de 16,59 ± 0,94 kg / dia, enquanto o WT produziu uma média de 14,83 ± 0,41 kg / dia (p = 0,746). O LS apresentou IC menor que o WT com média de 14,42 ± 0,13 vs 16,06 ± 0,08 (p = 0,001). Sob as condições climáticas de Porto Rico, vacas leiteiras SL apresentam melhor desempenho reprodutivo do que WT. O gene SL pode ser uma estratégia adaptativa para apoiar uma indústria de laticínios eficiente em um clima global mais quente.

Downloads

Não há dados estatísticos.

Referências

Amit, K., and R. S. Gandhi. 2011. Evaluation of pooled lactation production and reproduction traits in Sahiwal cattle. Indian Journal of Animal Sciences, 81(6), 600-604. https://www.cabdirect.org/cabdirect/abstract/20113221201

Belhadj Slimen, I., T. Najar, A. Ghram, and M. Abdrrabba. 2016. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. Journal of Animal Physiology and Animal Nutrition, 100(3), 401-412. https://doi.org/10.1111/jpn.12379

Bernabucci, U., N. Lacetera, L. H. Baumgard, R. P. Rhoads, B. Ronchi, and A. Nardone. 2010. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal. 4(7): 1167-1183. https://doi.org/10.1017/s175173111000090x

Berry, D. P., N. C. Friggens, M., Lucy, and J. R. Roche. 2016. Milk production and fertility in cattle. Annual review of animal biosciences, 4, 269-290. https://doi.org/10.1146/annurev-animal-021815-111406

Bertipaglia, E. C. A., R. G. Silva, and A. S. C. Maia. 2018. Fertility and hair coat characteristics of Holstein cows in a tropical environment. Animal Reproduction (AR), 2(3), 187-194. https://animal-reproduction.org/article/5b5a6087f7783717068b47fa/pdf/

Bohmanova, J., I. Misztal, and J. B. Cole. 2007. Temperature-humidity indices as indicators of milk production losses due to heat stress. Journal of dairy science, 90(4), 1947-1956. https://doi.org/10.3168/jds.2006-513

Curbelo-Rodríguez , J. E., V. Rodríguez-Cruz and A. Almeida-Montenegro. 2016. Evaluación de la capacidad termoregulatoria en bovinos lecheros Holstein pelona puertorriqueña, Holstein normal y Jersey. J. Agric. Univ. P.R. 100(1):1-12. 2016. https://doi.org/10.1007/s10584-017-2110-1

Dash, S., A. K. Chakravarty, A. Singh, A. Upadhyay, M. Singh, and S. Yousuf. 2016. Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review. Veterinary world, 9(3), 235–244. https://doi.org/10.14202/vetworld.2016.235-244

De Rensis, F., and R. J. Scaramuzzi. 2003. Heat stress and seasonal effects on reproduction in the dairy cow—a review. Theriogenology, 60(6), 1139-1151. https://doi.org/10.1016/S0093-691X(03)00126-2

Dikmen, S., F. A. Khan, H. J. Huson, T. S. Sonstegard, J. I. Moss, G. E. Dahl, and P. J. Hansen. 2014. The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. Journal of Dairy Science, 97(9), 5508-5520. https://doi.org/10.3168/jds.2014-8087

El-Tarabany, M. S., and A. A. El-Tarabany. 2015. Impact of maternal heat stress at insemination on the subsequent reproductive performance of Holstein, Brown Swiss, and their crosses. Theriogenology, 84(9), 1523-1529. https://doi.org/10.1016/j.theriogenology.2015.07.040

Grosshans, T., Z. Z. Xu, L. J. Burton, D. L. Johnson, and K. L. Macmillan. 1997. Performance and genetic parameters for fertility of seasonal dairy cows in New Zealand. Livestock Production Science, 51(1-3), 41-51. https://doi.org/10.1016/S0301-6226(97)00104-8

Hansen, P. J. 2009. Effects of heat stress on mammalian reproduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3341-3350. https://doi.org/10.1098/rstb.2009.0131

Hansen, P. J. 2019. Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction. Animal Reproduction, 16(3), 497-507. https://doi.org/10.21451/1984-3143-ar2019-0053

Kadzere, C. T., M. R. Murphy, N. Silanikove, and E. Maltz. 2002. Heat stress in lactating dairy cows: a review. Livestock production science, 77(1), 59-91. https://doi.org/10.1016/S0301-6226(01)00330-X

McGowan, M. R., D. G. Mayer, W. Tranter, M. Shaw, C. Smith, and T. M. Davison. 1996. Relationship between temperature humidity index and conception efficiency of dairy cattle in Queensland. In Proceedings-Australian Society of Animal Production. 21:454-454. http://livestocklibrary.com.au/handle/1234/8740

Molina-Fernández, J. F. 2001. Origin and development of the Dairy Industry of Puerto Rico. Page 30 in The Dairy Industry of Puerto Rico [Origen y desarrollo de la industria lechera en Puerto Rico. Página 30 en La industria lechera en Puerto Rico]. NUPRESS of Miami, Inc. Miami, FL

Morton, J. M., W. P. Tranter, D. G. Mayer, and N. N. Jonsson. 2007. Effects of environmental heat on conception rates in lactating dairy cows: critical periods of exposure. Journal of Dairy Science, 90(5), 2271-2278. https://doi.org/10.3168/jds.2006-574

Olson, T. A., C. Lucena, C. C. Chase Jr, and A. Hammond. 2003. Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle. Journal of Animal Science, 81(1), 80-90. https://doi.org/10.2527/2003.81180x

Ortiz-Colón, G., S. J. Fain, I. K. Parés, J. Curbelo-Rodríguez, E. Jiménez-Cabán, M. Pagán-Morales, and W. A. Gould. 2018. Assessing climate vulnerabilities and adaptive strategies for resilient beef and dairy operations in the tropics. Climatic Change, 146(1-2), 47-58. https://doi.org/10.1007/s10584-017-2110-1

Pantoja, J., T. Olson, T. Ruiz, Á. Custodio, B. Vallejo y M. Pagán. 2005. Evaluation of factors that influence dairy productivity in dairy cows with short hair in the tropics Proceedings of the Annual Meeting of the Puerto Rican Society of Agricultural Sciences. 27:70.

Renna, M., C. Lussiana, V. Malfatto, A. Mimosi, and L. M. Battaglini. 2010. Effect of exposure to heat stress conditions on milk yield and quality of dairy cows grazing on Alpine pasture. In Proceedings of 9th European IFSA Symposium (pp. 4-7). https://www.cabdirect.org/cabdirect/abstract/20133409908

Ríos-Solís, C. G., N. R. Cid-Hernández, E. Ruiz-Cortés, E. Valencia, J. E. Curbelo-Rodríguez, and G. Ortiz-Colón. 2019a. Rectal temperature, respiration rate, and heart rate of slick-hair and wild-type lactating Holstein cows under heat stress. J. Dairy Sci. Vol. 102, Suppl. 1: 11 (Abstract). https://m.adsa.org/2019/abs/t/79151

Ríos-Solís, C. G, E. Valencia, J. E. Curbelo-Rodríguez, and G. Ortiz-Colón. 2019b. Feed efficiency of slick-hair and wild-type dairy cows under heat stress. J. Dairy Sci. Vol. 102, Suppl. 1: 311 (Abstract). https://m.adsa.org/2019/abs/t/79065

Ryan, P. D., J. F. Prichard, E. Kopel and R. A. Godke. 1993. Comparing early embryo mortality in dairy cows during hot and cool seasons of the year. Theriogenology, 39:719-737. https://doi.org/10.1016/0093-691x(93)90257-6

Sattar, A., R. H. Mirza, A. A. K. Niazi, and M. Latif. 2005. Productive and reproductive performance of Holstein-Friesian cows in Pakistan. Pakistan Veterinary Journal, 25(2), 75. http://pvj.com.pk/pdf-files/25_2/75-81.pdf

St-Pierre, N. R., B. Cobanov, and G. Schnitkey. 2003. Economic losses from heat stress by US livestock industries. J. Dairy Sci., 86, E52-E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5

West, J. 2003. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci., 86(6), 2131-2144. https://doi.org/10.3168/jds.S0022-0302(03)73803-X

West, J. W. 1994. Interactions of energy and bovine somatotropin with heat stress. J. Dairy Sci., 77(7), 2091-2102. https://doi.org/10.3168/jds.S0022-0302(94)77152-6

Wolfenson, D., and Z. Roth. 2019. Impact of heat stress on cow reproduction and fertility. Animal Frontiers, 9(1), 32-38. https://doi.org/10.1093/af/vfy027

Younas, M., J. W. Fuquay, A. E. Smith, and A. B. Moore. 1993. Estrous and endocrine responses of lactating Holsteins to forced ventilation during summer. J. Dairy Sci., 76(2), 430-436. https://doi.org/10.3168/jds.S0022-0302(93)77363-4

Zimbelman, R. B., R. P. Rhoads, M. L. Rhoads, G. C. Duff, L. H. Baumgard, R. J. Collier. 2009. A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. In Proceedings of the 24th Southwest Nutrition and Management conference (pp. 158-169).

Publicado
2020-11-09
Como Citar
Ortiz-Uriarte, Bianca, Natalia Rosa-Padilla, Rafael López-López, Jaime Curbelo-Rodríguez, Verónica Negrón-Pérez, e Guillermo Ortiz-Colón. 2020. “O Slick Holstein Como Uma Alternativa Para Lidar Com O Estresse Por Calor Em operações De laticínios Tropicais”. Archivos Latinoamericanos De Producción Animal 28 (3-4), 145-53. https://ojs.alpa.uy/index.php/ojs_files/article/view/2817.