La Holstein de pelo corto como alternativa para enfrentar el estrés por calor en las operaciones de leche en el trópico
Resumen
El estrés por calor es un reto para la producción de leche en la mayor parte del mundo. El ganado Criollo puertorriqueño es portador del gen Slick (SL) que resulta en un pelo corto lustroso que le otorga mejor tolerancia al calor, lo que los hace un recurso genético valioso en programas de mejoramiento genético de ganado lechero con objetivos de aumentar resiliencia ante el cambio climático. El gen SL ha sido parte del acervo génico de ganado lechero puertorriqueño tiempo suficiente y tiene hatos con ganado Holstein SL registrados con porcentajes de ascendencia >93%. Se evaluó la producción de leche a través del ciclo de lactancia y los intervalos entre partos de vacas Holstein registradas en la vaquería El Remanso en Puerto Rico. Los datos productivos y reproductivos se obtuvieron del Dairy Records Management System (www.drms.org), para comparar la producción de 17 vacas Holstein SL registradas con 68 Holstein fenotipo silvestre (WT). Se utilizó Proc GLIMMIX de SAS (SAS University Edition, 2018) y una prueba de Tukey para analizar la producción de leche durante el período caluroso utilizando un modelo que incluía genotipo (SL y WT), etapa de lactancia y número de lactancia como efectos fijos. La prueba de Tukey también se realizó comparando el intervalo de parto (CI) entre 4-12 SL y 4-12 WT con datos de 2013-2016 (n varía según el año). La producción promedio de las SL fue 16.59±0.94 kg/día, mientras que las WT produjeron un promedio de 14.83±0.41 kg/día(p=0.746). Las SL mostraron un CI más corto que las WT con un promedio de 14.42±0.13 vs 16.06±0.08 (p=0.001). Bajo condiciones climáticas de Puerto Rico las vacas lecheras SL tienen un mejor rendimiento reproductivo que las WT. El gen SL puede ser una estrategia adaptativa para apoyar una industria lechera eficiente en un clima global más cálido.
Descargas
Citas
Amit, K., and R. S. Gandhi. 2011. Evaluation of pooled lactation production and reproduction traits in Sahiwal cattle. Indian Journal of Animal Sciences, 81(6), 600-604. https://www.cabdirect.org/cabdirect/abstract/20113221201
Belhadj Slimen, I., T. Najar, A. Ghram, and M. Abdrrabba. 2016. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. Journal of Animal Physiology and Animal Nutrition, 100(3), 401-412. https://doi.org/10.1111/jpn.12379
Bernabucci, U., N. Lacetera, L. H. Baumgard, R. P. Rhoads, B. Ronchi, and A. Nardone. 2010. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal. 4(7): 1167-1183. https://doi.org/10.1017/s175173111000090x
Berry, D. P., N. C. Friggens, M., Lucy, and J. R. Roche. 2016. Milk production and fertility in cattle. Annual review of animal biosciences, 4, 269-290. https://doi.org/10.1146/annurev-animal-021815-111406
Bertipaglia, E. C. A., R. G. Silva, and A. S. C. Maia. 2018. Fertility and hair coat characteristics of Holstein cows in a tropical environment. Animal Reproduction (AR), 2(3), 187-194. https://animal-reproduction.org/article/5b5a6087f7783717068b47fa/pdf/
Bohmanova, J., I. Misztal, and J. B. Cole. 2007. Temperature-humidity indices as indicators of milk production losses due to heat stress. Journal of dairy science, 90(4), 1947-1956. https://doi.org/10.3168/jds.2006-513
Curbelo-Rodríguez , J. E., V. Rodríguez-Cruz and A. Almeida-Montenegro. 2016. Evaluación de la capacidad termoregulatoria en bovinos lecheros Holstein pelona puertorriqueña, Holstein normal y Jersey. J. Agric. Univ. P.R. 100(1):1-12. 2016. https://doi.org/10.1007/s10584-017-2110-1
Dash, S., A. K. Chakravarty, A. Singh, A. Upadhyay, M. Singh, and S. Yousuf. 2016. Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review. Veterinary world, 9(3), 235–244. https://doi.org/10.14202/vetworld.2016.235-244
De Rensis, F., and R. J. Scaramuzzi. 2003. Heat stress and seasonal effects on reproduction in the dairy cow—a review. Theriogenology, 60(6), 1139-1151. https://doi.org/10.1016/S0093-691X(03)00126-2
Dikmen, S., F. A. Khan, H. J. Huson, T. S. Sonstegard, J. I. Moss, G. E. Dahl, and P. J. Hansen. 2014. The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. Journal of Dairy Science, 97(9), 5508-5520. https://doi.org/10.3168/jds.2014-8087
El-Tarabany, M. S., and A. A. El-Tarabany. 2015. Impact of maternal heat stress at insemination on the subsequent reproductive performance of Holstein, Brown Swiss, and their crosses. Theriogenology, 84(9), 1523-1529. https://doi.org/10.1016/j.theriogenology.2015.07.040
Grosshans, T., Z. Z. Xu, L. J. Burton, D. L. Johnson, and K. L. Macmillan. 1997. Performance and genetic parameters for fertility of seasonal dairy cows in New Zealand. Livestock Production Science, 51(1-3), 41-51. https://doi.org/10.1016/S0301-6226(97)00104-8
Hansen, P. J. 2009. Effects of heat stress on mammalian reproduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3341-3350. https://doi.org/10.1098/rstb.2009.0131
Hansen, P. J. 2019. Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction. Animal Reproduction, 16(3), 497-507. https://doi.org/10.21451/1984-3143-ar2019-0053
Kadzere, C. T., M. R. Murphy, N. Silanikove, and E. Maltz. 2002. Heat stress in lactating dairy cows: a review. Livestock production science, 77(1), 59-91. https://doi.org/10.1016/S0301-6226(01)00330-X
McGowan, M. R., D. G. Mayer, W. Tranter, M. Shaw, C. Smith, and T. M. Davison. 1996. Relationship between temperature humidity index and conception efficiency of dairy cattle in Queensland. In Proceedings-Australian Society of Animal Production. 21:454-454. http://livestocklibrary.com.au/handle/1234/8740
Molina-Fernández, J. F. 2001. Origin and development of the Dairy Industry of Puerto Rico. Page 30 in The Dairy Industry of Puerto Rico [Origen y desarrollo de la industria lechera en Puerto Rico. Página 30 en La industria lechera en Puerto Rico]. NUPRESS of Miami, Inc. Miami, FL
Morton, J. M., W. P. Tranter, D. G. Mayer, and N. N. Jonsson. 2007. Effects of environmental heat on conception rates in lactating dairy cows: critical periods of exposure. Journal of Dairy Science, 90(5), 2271-2278. https://doi.org/10.3168/jds.2006-574
Olson, T. A., C. Lucena, C. C. Chase Jr, and A. Hammond. 2003. Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle. Journal of Animal Science, 81(1), 80-90. https://doi.org/10.2527/2003.81180x
Ortiz-Colón, G., S. J. Fain, I. K. Parés, J. Curbelo-Rodríguez, E. Jiménez-Cabán, M. Pagán-Morales, and W. A. Gould. 2018. Assessing climate vulnerabilities and adaptive strategies for resilient beef and dairy operations in the tropics. Climatic Change, 146(1-2), 47-58. https://doi.org/10.1007/s10584-017-2110-1
Pantoja, J., T. Olson, T. Ruiz, Á. Custodio, B. Vallejo y M. Pagán. 2005. Evaluation of factors that influence dairy productivity in dairy cows with short hair in the tropics Proceedings of the Annual Meeting of the Puerto Rican Society of Agricultural Sciences. 27:70.
Renna, M., C. Lussiana, V. Malfatto, A. Mimosi, and L. M. Battaglini. 2010. Effect of exposure to heat stress conditions on milk yield and quality of dairy cows grazing on Alpine pasture. In Proceedings of 9th European IFSA Symposium (pp. 4-7). https://www.cabdirect.org/cabdirect/abstract/20133409908
Ríos-Solís, C. G., N. R. Cid-Hernández, E. Ruiz-Cortés, E. Valencia, J. E. Curbelo-Rodríguez, and G. Ortiz-Colón. 2019a. Rectal temperature, respiration rate, and heart rate of slick-hair and wild-type lactating Holstein cows under heat stress. J. Dairy Sci. Vol. 102, Suppl. 1: 11 (Abstract). https://m.adsa.org/2019/abs/t/79151
Ríos-Solís, C. G, E. Valencia, J. E. Curbelo-Rodríguez, and G. Ortiz-Colón. 2019b. Feed efficiency of slick-hair and wild-type dairy cows under heat stress. J. Dairy Sci. Vol. 102, Suppl. 1: 311 (Abstract). https://m.adsa.org/2019/abs/t/79065
Ryan, P. D., J. F. Prichard, E. Kopel and R. A. Godke. 1993. Comparing early embryo mortality in dairy cows during hot and cool seasons of the year. Theriogenology, 39:719-737. https://doi.org/10.1016/0093-691x(93)90257-6
Sattar, A., R. H. Mirza, A. A. K. Niazi, and M. Latif. 2005. Productive and reproductive performance of Holstein-Friesian cows in Pakistan. Pakistan Veterinary Journal, 25(2), 75. http://pvj.com.pk/pdf-files/25_2/75-81.pdf
St-Pierre, N. R., B. Cobanov, and G. Schnitkey. 2003. Economic losses from heat stress by US livestock industries. J. Dairy Sci., 86, E52-E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5
West, J. 2003. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci., 86(6), 2131-2144. https://doi.org/10.3168/jds.S0022-0302(03)73803-X
West, J. W. 1994. Interactions of energy and bovine somatotropin with heat stress. J. Dairy Sci., 77(7), 2091-2102. https://doi.org/10.3168/jds.S0022-0302(94)77152-6
Wolfenson, D., and Z. Roth. 2019. Impact of heat stress on cow reproduction and fertility. Animal Frontiers, 9(1), 32-38. https://doi.org/10.1093/af/vfy027
Younas, M., J. W. Fuquay, A. E. Smith, and A. B. Moore. 1993. Estrous and endocrine responses of lactating Holsteins to forced ventilation during summer. J. Dairy Sci., 76(2), 430-436. https://doi.org/10.3168/jds.S0022-0302(93)77363-4
Zimbelman, R. B., R. P. Rhoads, M. L. Rhoads, G. C. Duff, L. H. Baumgard, R. J. Collier. 2009. A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. In Proceedings of the 24th Southwest Nutrition and Management conference (pp. 158-169).
Derechos de autor 2020 Bianca Ortiz-Uriarte, Natalia Rosa-Padilla, Rafael López-López, Jaime Curbelo-Rodríguez, Verónica Negrón-Pérez, Guillermo Ortiz-Colón

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.