Probiotic potential of bacteria obtained from microbiota of calves

  • Sarahí Rodríguez-González Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México.
  • María Laura González-Dávalos Laboratorio de Rumiología y Metabolismo Nutricional, FESC, UNAM https://orcid.org/0000-0001-5581-1773
  • Armando Shimada Laboratorio de Rumiología y Metabolismo Nutricional, FESC, UNAM
  • María Ofelia Mora Izaguirre FESC-UNAM
Keywords: Calves, microbiota, probiotic, Lactobacillus, diarrhea, rumen

Abstract

The high incidence of diarrhea in calves increases calf morbidity, which significantly affects animal production and consequently increases the demand for meat. Probiotics can improve the animal's immune response and inhibit pathogens, which would solve the problem. It would be very helpful to obtain information from studies where isolated bacteria from the microbiota of calves have been shown to have probiotic properties and apply that knowledge to reduce the incidence of diarrhea in calves and improve their health. The aim of this review was to obtain information from studies where calf microbiota isolated bacteria were in vitro evaluated for probiotic properties (resistance to bile salts and pH, ability to adhere to mucus, self-aggregation and hydrophobicity, antibiotic susceptibility and pathogens inhibition). There was evidence of bacteria isolation with probiotic potential from the microbiota of calves. In several studies, the incidence of diarrhea was significantly reduced, when calves were treated with these probiotics by improving the immune response and therefore, the health of the animal. Lactic acid bacteria isolated from calf microbiota, mainly Lactobacillus, showed their potential as probiotics improving the immune response of calves, thereby decreasing diarrhea problems, strengthening animal health and consequently, cattle production. The knowledge generated is crucial to consider and implement new practices for preventing gastrointestinal diseases, establishing innovative development of probiotics to increase animal production level and welfare of the calves.

Downloads

Download data is not yet available.

Author Biographies

Sarahí Rodríguez-González, Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México.

Posdoctorado en el Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México.

María Laura González-Dávalos, Laboratorio de Rumiología y Metabolismo Nutricional, FESC, UNAM

Técnico Académico en el Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México.

Armando Shimada, Laboratorio de Rumiología y Metabolismo Nutricional, FESC, UNAM

Profesor emérito de la UNAM. Especialista en Nutrición Animal.

 

 

María Ofelia Mora Izaguirre, FESC-UNAM

Profesor Titular B. Tiempo Completo. Definitivo. Laboratorio de Rumiología y Metabolismo Nutricional. Facultad de Estudios Superiores-Cuautitlán UNAM

References

Abe, F., N. Ishibashi, and S. Shimamura. 1995. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. Journal of Dairy Science, 78: 2838-2846. doi: 10.3168/jds.S0022-0302(95)76914-4

Abraham, C. and Medzhitov, R. 2011. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology, 140:1729–1737. doi:10.1053/j.gastro.2011.02.012

Abu-Tarboush, H. M., M. Y. Al Saidy, and A. H. Keir El Din. 1996. Evaluation of diet containing Lactobacilli on performance, fecal coliform, and lactobacilli of young dairy calves. Animal Feed Science and Technology, 57: 39-49. doi:10.1016/0377-8401(95)00850-0

Adams, M. R. and P. Marteau. 1995. On the safety of lactic acid bacteria from food. International Journal of Food Microbiology, 27: 263-264. doi:10.1016/0168-1605(95)00067-T

Alawneh J. I., M. O. Barreto, R. J. Moore, M. Soust, H. Al-harbi, A. S. James, D. Krishnan and T. W. J. Olchowy. 2020. Systematic review of an intervention: the use of probiotics to improve health and productivity of calves. Preventive Veterinary Medicine, 183:105147. doi: 10.1016/j.prevetmed.2020.105147

Al-Saiady M. Y. 2010. Effect of probiotic bacteria on immunoglobulin g concentration and other blood components of newborn calves. Journal of Animal and Veterinary Advances, 9(3):604–609. doi:10.3923/javaa.2010.604.609

Ávila, F. A., A. C. Paulillo, R. P. Schoken-Iturino, F. A. Lucas, A. Orgaz, and J. L. Quintana. 1995. A comparative study of the efficiency of a probiotic and the anti-K99 and anti-A14 vaccines in the control of diarrhea in calves in Brazil. Revue d’elevage et de Medecine Veterinaire des Pays Tropicaux, 48: 239-43. https://pubmed.ncbi.nlm.nih.gov/8745746/

Brestoff J. R. and D. Artis. 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nature immunology, 14(7): 676-684. doi:10.1038/ni.2640

Boranbayeva, T., A. K. Gül, Z. Tulemissova, R. Myktybayeva, and S. Özkaya. 2020. Properties of a New Probiotic Candidate and Lactobacterin-TK2 Against Diarrhea in Calves. Probiotics and Antimicrobial Proteins, 12: 918-928. doi:10.1007/s12602-020-09649-4

Bujnakova, D., E. Strakova, and V. Kmet. 2014. In vitro evaluation of the safety and probiotic properties of Lactobacilli isolated from chicken and calves. Anaerobe, 29: 118-127. doi:10.1016/j.anaerobe.2013.10.009

Busconi, M., S. Reggi, and C. Fogher. 2008. Evaluation of biodiversity of lactic acid bacteria microbiota in the calf intestinal tracts. Antonie van Leeuwenhoek, 94: 145-155. doi:10.1007/s10482-008-9220-8

Castillo, A. P. L., B. H. C. Augusto, and P. E. Pardo. 2018. Caracterización de microorganismos con potencial probiótico aislados de estiércol de terneros Brahman en Sucre, Colombia. Revista de Investigaciones Veterinarias del Perú, 29: 438-448. doi:10.15381/rivep.v29i2.14482

Diario Oficial de la Unión Europea. 2019. Reglamento (UE) 2019/4 del parlamento Europeo y del consejo de 11 de diciembre de 2018. Relativo a la fabricación, la comercialización y el uso de piensos medicamentosos, por el que se modifica el Reglamento (CE) n.o 183/2005 del Parlamento Europeo y del Consejo y se deroga la Directiva 90/167/CEE del Consejo https://www.boe.es/doue/2019/004/L00001-00023.pdf. Consultada el 31 de Diciembre de 2022.

Dowarah, R., A. K. Verma, N. Agarwal, P. Singh, and B. R. Singh. 2018. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS One, 13: e0192978. doi:10.1371/journal.pone.0192978

Duarte, E. R., V. V. Araujo, V. A. C. Rodrigues, F. Guimaraes, F. H. Calixto, D. M. Soares, S. B. T. Gomes, and P. M. Soares. 2021. Selection and Molecular Identification of Lactic Acid Bacteria with Probiotic Potential from Girolando Calves Raised in a Semiarid Region. International Journal of Agriculture & Biology, 26: 425-430. doi:10.17957/IJAB/15.1852

Fanaro S., R. Chierici, O. Guerrini and V. Vigi. 2003. Intestinal microflora in early infancy: composition and development. Acta Paediatrica Supplement, 91(441):48–55. doi:10.1111/j.1651-2227.2003.tb00646.x.

Feist, K., S. Nagel, and J. Voigt. 1997. Microbial cultures versus germs causing diarrhea. Probiotic against calf diarrhea. Neu Landwirtschaft, 2: 66-68.

Fernández, S., M. Fraga, E. Silveyra, A. N. Trombert, A. Rabaza, M. Pla, and P. Zunino. 2018. Probiotic properties of native Lactobacillus spp. strains for dairy calves. Beneficial Microbes, 9: 613-624. doi:10.3920/BM2017.0131

Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). 2002. Guidelines for the Evaluation of Probiotics in Food. [online] London Ontario, Canada. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf Consultada el 23 de Septiembre de 2021.

Frizzo, L. S., L. P. Soto, E. Bertozii, G. Sequeira, L. E. Marti, and M. R. Rosmini. 2006. Evaluación in vitro de las capacidades probióticas microbianas orientadas al diseño de inóculos probióticos multiespecie para ser utilizados en la crianza de terneros. Revista FAVE-Ciencias Veterinarias, 5: 1-2. doi:10.14409/favecv.v5i1/2.1426

Frizzo, L. S., E. Bertozii, L. P. Soto, M. V. Zbrun, G. Sequeira, R. Dalla Santina, A. R. Rodriguez, and M. R. Rosmini. 2008. The Effect of Supplementation with Three Lactic Acid Bacteria from Bovine Origin on Growth Performance and Health Status of Young Calves. Journal of Animal and Veterinary Advances, 7: 400-408. https://www.researchgate.net/publication/26590160

Gill, D. R., R. A. Smith, and R. L. Ball. 1987. The effect of probiotics feeding on health and performance of newly arrived stoker calves. Animal Science Research Report, 119: 202-204. https://agris.fao.org/agris-search/search.do?recordID=US875667688

Guarner, F., G. Perdigon, G. Corthier, S. Salminen, B. Koletzko, and L. Morelli. 2005. Should yoghurt cultures be considered probiotic? British Journal of Nutrition, 93: 783–786. doi: 10.1079/BJN20051428

Hernández-Peñaranda, A. 2003. Microbiología Industrial. Costa Rica: EUNED. https://editorial.uned.ac.cr/book/U03142. Consultada el 23 de Semptiembre de 2021.

Hooper, L. V., D. R. Littman, and A. J. Macpherson. 2012. Interactions between the microbiota and the immune system. Science, 336: 1268–1273. doi:10.1126/science.1223490

Hill, D.A. and D. Artis. 2010. Intestinal bacteria and the regulation of immune cell homeostasis. Annual Review Immunology, 28: 623–667. doi:10.1146/annurev-immunol-030409-101330

Isolauri, E., Y. Sütas, P. Kankaanpää, H. Arvilommi, and S. Salminen. 2001. Probiotics: effects on immunity. The American Journal of Clinical Nutrition, 73: 444S-450S. doi:/10.1093/ajcn/73.2.444s

Jost T., C. Lacroix, C. P. Braegger and C. Chassard. 2012. New insights in gut microbiota establishment in healthy breast-fed neonates. PLoS One 7:e44595. doi:10.1371/journal.pone.0044595

Khang, Y., H. Park. Y. Jeong, J. Kim, and Y. Kim. 2009. Recombinant S-layer proteins of Lactobacillus brevis mediating antibody adhesion to calf intestine alleviated neonatal diarrhea syndrome. Journal of Microbiology and Biotechnoly, 19: 511-9. doi:10.4014/jmb.0805.325

Landa-Salgado P., Y. Caballero-Cervantes, E. Ramírez-Bribiesca, A. M. Hernández-Anguiano, L. M. Ramírez-Hernández, D. Espinosa-Victoria, and D. Hernández-Sánchez. 2019. Aislamiento e identificación de bacterias ácido lácticas con potencial probiótico para becerros del altiplano mexicano. Revista Mexicana de Ciencias Pecuarias, 10: 68-83. doi:10.22319/rmcp.v10i1.4512

Maldonado, N. C., R. C. Silva, M. C. Otero, F. Sesma, and M. M. E. Nader. 2012. Lactic acid bacteria isolated from young calves – Characterization and potential as probiotics. Research in Veterinary Science, 92: 342-349. doi:10.1016/j.rvsc.2011.03.017

Mathur, S. and R. Singh. 2005. Antibiotic resistance in food lactic acid bacteria - a review. International Journal of Food Microbiology, 105: 281–295. doi:10.1016/j.ijfoodmicro.2005.03.008

Morrill, J. L., J. M. Morrill, A. M. Feyerherm, and J. F. Laster. 1995. Plasma proteins and a probiotic as ingredients in milk replacer. Journal of Dairy Science, 78: 902-7. doi:10.3168/jds.S0022-0302(95)76704-2

Ok, M., L. Güler, K. Turgut, Ü. Ok, I. Şen, I. K. Gündüz, M. F. Birdane, and H. Güzelbekteş. 2009. The studies on the aetiology of diarrhoea in neonatal calves and determination of virulence gene markers of Escherichia coli strains by multiplex PCR. Zoonoses and Public Health, 56: 94-101. doi:10.1111/j.1863-2378.2008.01156.x

Oikonomou G., A.G.V. Teixeira, C. Foditsch, M. L. Bicalho, V. S. Machado and R. C. Bicalho. 2013. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS One 8:e63157. doi:10.1371/journal.pone.0063157

Olszak, T., D. An, S. Zeissig, M. P. Vera, J. Richter, A. Franke, J. N. Glickman, R. Siebert, R. M. Baron, D. L. Kasper, and R. S. Blumberg. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science, 336: 489–493. doi:10.1126/science.1219328

Organización Mundial de la Salud. 2017. Dejemos de administrar antibióticos a animales sanos para prevenir la propagación de la resistencia a los antimicrobianos. https://www.who.int/es/news/item/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance, consultada el 10 de Enero de 2023.

Pineiro, M. and C. Stanton. 2007. Probiotic Bacteria: Legislative Framework— Requirements to Evidence Basis. The Journal of Nutrition, 137: 850S-853S. doi:10.1093/jn/137.3.850S

Ridwan, R., B. W. Ariga, A. W. Dwi, R. Rohmatussolihat, S. N. Fitri, R. Fidriyanto, A. Jayanegara, I. Wijayanti, and Y. Widyastuti. 2018. The use of lactic Acid Bacteria as Ruminant probiotic candidates based on In vitro Rumen Fermentation Characteristics. Buletin Peternakan, 42: 31-36. doi:10.21059/buletinpeternak.v42i1.23317

Ripamonti, B., A. Agazzi, C. Bersani, P. De Dea, C. Pecorini, S. Pirani, R. Rebucci, G. Savoino, S. Stella, A. Stenico, E.Tirloni, and C. Domeneghini. 2011. Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts. Anaerobe, 17: 97-105. doi:10.1016/j.anaerobe.2011.05.001

Rodríguez-Palacios, H. R., T. Staempfli,, and J. S. Duffield. 2009. Isolation of bovine intestinal Lactobacillus plantarum and Pediococcus acidilactici with inhibitory activity against Escherichia coli O157 and F5. Journal of Applied Microbiology, 106: 393–401. doi:10.1111/j.1365-2672.2008.03959.x

Rosmini, M., G. Sequeira, I. Guerrero-Legarreta, L. Martí, R. Dalla-Santina, L. Frizzo, and J. Bonazza. 2004. Producción de probióticos para animales de abasto: importancia del uso de la microbiota intestinal indígena. Revista Mexicana de Ingeniería Química, 3: 181-191. https://www.redalyc.org/pdf/620/62030203.pdf Consultada el 25 de Septiembre de 2021.

Roth, F. X., M., Kirshgessner, U. Eidelsburger, and B. Gedek. 1992. Nutritive effect of Bacillus cereus as a probiotic for veal calves. 1. Influence on growth variables, slaughter performance and microbial metabolites in the small intestine. Agrobiological Research, 45: 294-302.

Ruby, J. and S. C. Ingham. 2009. Using enterobacteriaceae analysis results for predicting absence of Salmonella serovars on beef carcasses. Journal of Food Protection, 72: 260–266. doi:10.4315/0362-028x-72.2.260

Sandes, S., L. Alvim, B. Sliva, L. Acurcio, C. Santos, M. Campos, C. Santos, J. Nicoli, E. Neumann, and A. Nunes. 2017. Selection of new lactic acid bacteria strains bearing probiotic features from mucosal microbiota of healthy calves: Looking for immunobiotics through in vitro and in vivo approaches for immunoprophylaxis applications. Microbiological Research, 200: 1-3. doi:10.1016/j.micres.2017.03.008

Sarker, M.S.K. S. Y. Ko, S. M. Lee, G. M. Kim, J. K. Choi and C. J. Yang. 2010. Effect of different feed additives on growth performance and blood profiles of Korean Hanwoo calves. Asian-Australasian Journal of Animal Sciences, 23(1): 52–60. doi:10.5713/ajas.2010.90280

Signorini, M. L., L. P. Soto, M. V. Zbrun, G. J. Sequeira, M. R. Rosmini, and L. S. Frizzo. 2012. Impact of probiotic administration on the health and fecal microbiota of young calves: a meta-analysis of randomized controlled trials of lactic acid bacteria. Research in Veterinary Science, 93: 250-258. doi:10.1016/j.rvsc.2011.05.001

Soto L. P., L. S. Frizzo, E. Bertozzi, E. Avataneo, G. J. Sequeira, and M. R. Rosmini. 2010. Molecular Microbial Analysis of Lactobacillus Strains Isolated from the Gut of Calves for Potential Probiotic Use. Veterinary Medicine International, 2010. doi:10.4061/2010/274987

Strzetelski, J., R. J. Maciejewicz, K. Bilik, T. Stasiniewicz, E. Lipiarska, and K. Stecka. 1996. Effect of new yeast preparations on calf rearing, rumen fermentation and protozoa population in the rumen of young bulls. Roczniki Naukowe Zootechniki, 23: 123-141.

Tang, L. K., N. P. Caffrey, D. B. Nóbrega, S. C. Cork, P. E. Ronksley, P.H.W. Barkema, A. J. Polachek, H. Ganshorn, N. Sharma, J. D. Keller and W. A. Ghali. 2017. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. THE LANCET Planetary Health, 1(8):E316-E327. doi:10.1016/S2542-5196(17)30141-9

Timmerman, H. M., L. Mulder, H. Everts, D. C. van Espen, E. van der Wal, G. Klaassen, S. M. G. Rouwers, R. Hartemink, F. M. Rombouts, and A. C. Beynen. 2005. Health and Growth of Veal Calves Fed Milk Replacers With or Without Probiotics. Journal of Dairy Science, 88: 2154-2165. doi:10.3168/jds.S0022-0302(05)72891-5

Tremaroli, V. and F. Bächked. 2012. Functional interactions between the gut microbiota and host metabolism. Nature, 489:242–249. doi: /10.1038/nature11552

Turroni F., C. Peano, D. A. Pass, E. Foroni, M. Severgnini, M. J. Claesson, C. Kerr, J. Hourihane, D. Murray, F. Fuilgni, M. Gueimonde, A. Margolles, G. De Bellis, P. W. O'Toole, D. van Sinderen, J. R. Marcheis and M. Ventura. 2012. Diversity of Bifidobacteria within the infant gut microbiota. PLoS One, 7(5):e36957. doi:10.1371/journal.pone.0036957

Uyeno Y., Y. Sekiguchi and Y. Kamagata. 2010. rRNA-based analysis to monitor succession of faecal bacterial communities in Holstein calves. Letters in Applied Microbiology, 51(5):570–577. doi:10.1111/j.1472-765X.2010.02937.x.

Uyeno, Y., S. Shigemori, and T. Shimosato. 2015. Effect of probiotics/prebiotics on Cattle Health and Productivity. Microbes and Environments, 30: 126-32. doi:10.1264/jsme2.ME14176

Vamanu, E., A. Vamanu, O. Popa, T. Vassu, R. Ghindea, D. Pelinescu, S. Nita, and N. Babeanu. 2008. Effect of the yeast and bacteria biomass on the microbiota in the rumen. Pakistan Journal of Biological Sciences, 11: 2217-2223. doi:10.3923/pjbs.2008.2217.2223

Ventura, B. A., M. A. G. Von Keyserlingk, C. A. Schuppli, and D. M. Weary. 2013. Views on contentious practices in dairy farming: the case of early cow-calf separation. Journal of Dairy Science, 96: 6105-6116. doi:10.3168/jds.2012-6040

Weimer, P. J. 2015. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Frontiers in microbiology, 6: 296. doi:10.3389/fmicb.2015.00296Zamora, L. 2003. Aislamiento identificación y conservación de cultivos de bacterias lácticas antagonistas de microbiota contaminante de sangre de matadero. Ph. D. Universitat de Girona. https://www.tdx.cat/handle/10803/7925#page=1 Consultada el 28 de Septiembre de 2021.

Zhang, R., M. Zhou, Y. Tu, N. F. Zhang, K. D. Deng, T. Ma and Q. Y. Diao. 2016. Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress-related indicators in Holstein calves. Journal of Animal Physiology and Animal Nutrition (Berl), 100 (1): 33–38. doi:10.1111/ jpn.12338

Zhu, Y., J. Liu, J. M. Lopez, and D. A. Mills. 2020. Inulin fermentation by lactobacilli and bifidobacteria from dairy calves. Applied and Environmental Microbiology, 87: e01738-20. doi: 10.1128/AEM.01738-20.

Published
2023-09-15
How to Cite
Rodríguez-González, Sarahí, María Laura González-Dávalos, Armando Shimada, and María Ofelia Mora Izaguirre. 2023. “Probiotic Potential of Bacteria Obtained from Microbiota of Calves ”. Archivos Latinoamericanos De Producción Animal 31 (3), 231-42. https://doi.org/10.53588/alpa.310302.
Section
Invited papers