Invited paper Energy efficiency of cattle in grazing production systems
Abstract
En las últimas décadas el aumento de la población mundial y la mejora del poder adquisitivo de los países en desarrollo han determinado una demanda creciente y sostenida de alimentos, en particular de proteínas animales como la carne bovina (FAO, 2023). Este aumento en la demanda estuvo acompañado de un aumento en la producción que, a la vez, ha tenido consecuencias ambientales, como el incremento en la deforestación y de las emisiones de gases de efecto invernadero (GEI) asociados con la ganadería. En este sentido, se ha demostrado que el aumento de la productividad por unidad de área es más ventajoso en términos ambientales, que el aumento del área destinada a producción. Esta intensificación de la producción incrementa los flujos de energía y nutrientes, y expone a los sistemas a nuevos desafíos biológicos, económicos y ambientales. Este contexto ha llevado a un creciente interés por la eficiencia animal y, en particular, en el sector ganadero como una manera de satisfacer la demanda de carne, ahorrar insumos y reducir costos e impactos al medioambiente, de manera de mejorar la rentabilidad y la sostenibilidad ambiental de los sistemas de producción de carne. Los estudios aquí descriptos demuestran que el índice RHP puede ser utilizado para evaluar la eficiencia alimenticia individual, así como de manejos nutricionales en animales en pastoreo donde no es posible determinar el consumo individual de alimento en forma precisa. La RHP valora la eficiencia metabólica y está asociado a menores costos de mantenimiento de los animales o manejos más eficientes. nuevas investigaciones deberán continuar evaluando el efecto tanto de la selección por RFI o RHP en otros estados fisiológicos o funciones productivas (gestación-lactación) y niveles de alimentación (mantenimiento vs. ganancia) así como también su asociación con las emisiones de CH4.
Downloads
References
Berry, D.P., and Crowley, J.J., 2013. Cell biology symposium: Genetics of feed efficiency in dairy and beef cattle. Journal of Animal Science, 91:1594–1613. https://doi.org/10.2527/jas.2012-5862.
Brosh, A., 2007. Heart rate measurements as an index of energy expenditure and energy balance in ruminants: a review. Journal of Animal Science, 85:1213–1227. https://doi.org/10.2527/jas.2006-298
Casal, A., Veyga, M., Astessiano, A.L., Espasandin, A.C., Trujillo, A.I., Soca, P., and Carriquiry, M., 2014. Visceral organ mass, cellularity indexes and expression of genes encoding for mitochondrial respiratory chain proteins in pure and crossbred mature beef cows grazing different forage allowances of native pastures. Livestock Science, 167:195–205. https://doi.org/ 10.1016/j.livsci.2014.06.024
Casal, A., García-Roche, M., Navajas, E., Cassina, A., and Carriquiry, M., 2018. Hepatic mitochondrial function in Hereford steers with divergent residual feed intake phenotypes. Journal of Animal Science, 96(10):4431–4443. https://doi.org/10.1093/jas/sky285.
Casal, A., García-Roche, M., Navajas, E.A., Cassina, A., and Carriquiry, M., 2020. Differential hepatic oxidative status in steers with divergent residual feed intake phenotype. Animal, 14(1):78–85. https://doi.org/10.1017/S1751731119001332
Casal, A., García-Roche, M., Cassina, A., Soca, P., and Carriquiry, M., 2022. Cow–calf efficiency of beef cows grazing different herbage allowances of rangelands: hepatic mechanisms related to energy efficiency. Animal Production Science, 62:529–538. http://dx.doi.org/10.1071/AN20410
CSIRO, 2007. Feeding Systems for Australian Livestock: Ruminants. Melbourne: CSIRO Publications.
Dini, Y., Cajarville, C., Gere, J.I., Fernandez, S., Fraga, M., Pravia, M.I., Navajas, E.A., and Ciganda, V.S., 2018. Association between residual feed intake and enteric methane emissions in Hereford steers. Translational Animal Science, 3(1):239–246. https://doi.org/10.1093/tas/txy111
FAO, 2023. FAOSTAT: Livestock Primary. https://www.fao.org/faostat/
Gómez Zabala, M.J., 2022. Estimación del gasto energético en vacas de cría con diferentes ofertas de forraje. Universidad de la República. https://hdl.handle.net/20.500.12008/35861
Houghton, P.L., Lemenager, R.P., Hendrix, K.S., Moss, G.E., and Stewart, T.S., 1990. Effects of body composition, pre- and postpartum energy intake and stage of production on energy utilization by beef cows. Journal of Animal Science, 68:1447–1456. https://doi.org/10.2527/1990.6851447x
Johnson, K.A., and Johnson, D.E., 1995. Methane emissions from cattle. Journal of Animal Science, 73:2483–2492. https://doi.org/10.2527/1995.7382483x
Kenny, D.A., Fitzsimons, C., Waters, S.M., and McGee, M., 2018. Invited review: Improving feed efficiency of beef cattle: Current state of the art and future challenges. Animal, 12(9):1815–1826. https://doi.org/10.1017/S1751731118000976
Laporta, J., Astessiano, A.L., López-Mazz, C., Soca, P., Espasandin, A.C., and Carriquiry, M., 2014. Effects of herbage allowance of native grasslands in purebred and crossbred beef cows: Metabolic, endocrine and hepatic gene expression profiles through the gestation-lactation cycle. Animal, 8(7):1119–1129. https://doi.org/10.1017/S1751731114000986
Marín, M.F., Naya, H., Espasandin, A.C., Navajas, E., Devincenzi, T., and Carriquiry, M., 2024a. Energy efficiency of grazing Hereford heifers classified by paternal residual feed intake. Translational Animal Science, 8:txae005. https://doi.org/10.1093/tas/txae005
Marín, M.F., Naya, H., Espasandin, A.C., Navajas, E., Devincenzi, T., and Carriquiry, M., 2024b. Energy efficiency, reproductive performance, and metabolic parameters of grazing Hereford heifers. Livestock Science, 279:105389. https://doi.org/10.1016/j.livsci.2023.105389
Marín, F., Martínez-Boggio, G., Kendall, S.J., Carriquiry, M., White, H.M., and Peñagaricano, F., 2025. Residual heat production: A new trait for dairy cow efficiency? Journal of Dairy Science, 108(Suppl. 1):144.
Miron, J., Adin, G., Solomon, R., Nikbachat, M., Zenou, A., Shamay, A., Brosh, A., and Mabjeesh, S.Y., 2008. Heat production and retained energy in lactating cows held under hot summer conditions with evaporative cooling and fed two rations differing in roughage content and in vitro digestibility. Animal, 2:843–848. https://doi.org/10.1017/S1751731108001900
NASEM, 2016. Nutrient Requirements of Beef Cattle. 8th ed. Washington (DC): National Academies Press.
Navajas, E., De Barbieri, I., Ravagnolo, O., Pravia, M.I., Aguilar, I., Lema, O.M., Devincenzi, T., Peraza, P., Vera, B., Carracelas, B., and Ciappesoni, G., 2025. Genetic selection and livestock sustainability: A review of research and development in Uruguay. Agrociencia Uruguay, 29(NE2):e1480. https://doi.org/10.31285/AGRO.29.1480
Pravia, M.I., Navajas, E.A., Aguilar, I., and Ravagnolo, O., 2022. Evaluation of feed efficiency traits in different Hereford populations and their effect on variance component estimation. Animal Production Science, 62(17):1652–1660. http://dx.doi.org/10.1071/AN21420
Pravia, M.I., Navajas, E.A., Aguilar, I., and Ravagnolo, O., 2023. Prediction ability of an alternative multi-trait genomic evaluation for residual feed intake. Journal of Animal Breeding and Genetics, 140(5):508–518. https://doi.org/10.1111/jbg.12775
Richardson, E.C., Herd, R.M., Archer, J.A., Woodgate, R.T., and Arthur, P.F., 1998. Steers bred for improved net feed efficiency eat less for the same feedlot performance. Animal Production Australia, 22:213–216.
Tilman, D., Balzer, C., Hill, J., and Befort, B.L., 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108:20260–20264.
Trujillo, A.I., Casal, A., Peñagaricano, F., and Carriquiry, M., 2013. Association of SNP of neuropeptide Y, leptin, and IGF-1 genes with residual feed intake in confinement and under grazing condition in Angus cattle. Journal of Animal Science, 91:4235–4244. https://doi.org/10.2527/jas.2013-6254
Talmón, D., Jasinsky, A., Marin, F., Menegazzi, G., Chilibroste, P., and Carriquiry, M., 2024. Estimation of the energy cost of activities in grazing dairy cows using the oxygen pulse–heart rate method. Journal of Dairy Science, 108:5847–5859. https://doi.org/10.3168/jds.2024-25756
Talmón, D., Zhou, M., Carriquiry, M., Aarnink, A.J.A., and Gerrits, W.J.J., 2023. Effect of animal activity and air temperature on heat production, heart rate, and oxygen pulse in lactating Holstein cows. Journal of Dairy Science, 106: 1475-1487. https://doi.org/10.3168/jds.2022-22257
Copyright (c) 2025 Mariana Carriquiry

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.