Greenhouse gases potential offset by forest species and CO2 balance in integrated forestry-livestock systems in Uruguay
Abstract
Despite Uruguay's low absolute greenhouse gas emissions (GHG), livestock methane is the most significant source. Strategies such as integrated forestry and livestock production systems may contribute to a reduction in net emissions by capturing CO2 within the biomass of forest crops. A case study was conducted on Forestal Caja Bancaria (FCB), a commercial farm in Uruguay's central region, with an integrated production system covering 5802 hectares. The study aimed to estimate GHG emissions from livestock, crops and forestry, CO2 captured by eucalypt and pine plantations, and soil organic carbon for all land uses. Results showed that cattle enteric fermentation accounted for 54 kg.ha-1.yr-1 of methane (CH4), and total emissions accounted for 1746 kg.ha-1.yr-1 of CO2 equivalent. E. grandis, E. dunnii, and Pinus spp. captured 31, 38, and 17 Mg.ha-1.yr-1 CO2 equivalent during their pre-harvest growth cycles. According to GWP100 AR6, this capture rates could offset emissions from 17,6, 21,6 and 9,9 hectares of livestock production, respectively. Using a real system approach considering staggered sowing, harvesting, and subsequent resprouting or replanting, the estimated potential offsets are adjusted to 9,6, 11,8, and 5,1 hectares, respectively, until the first harvest. After this point, there is not further net biomass accumulation, and mitigation relies on the depletion of the remaining carbon stock in the forest area, which exceeds the carbon needed to offset livestock emissions from the previous phase. GTP100 AR6 and GWP* metrics indicated significantly lower CO2-eq emission values. This study aims to provide technical coefficients that facilitate the quantification of the potential for offsetting livestock emissions through forest plantations, aiming to contribute to the process of "carbon-neutral" beef production. It also provides valuable insights for farmers and foresters to understand the carbon stock potential of different forest systems and explore suitable combinations of cattle-forestry operations.
Downloads
References
2. América Economía. Uruguay’s meat export revenues fell 3.6% year-on-year in 2024 [Internet]. 2025 [cited 2025 Apr 8]. Available from: https://www.americaeconomia.com/en/economy-markets/uruguays-meat-export-revenues-fell-36-year-year-2024
3. Uruguay XXI. Annual Report Foreign Trade 2023. CELLULOSE [Internet]. Montevideo; 2023 [cited 2025 Apr 8]. Available from: https://www.uruguayxxi.gub.uy/en/information-center/article/foreign-trade-annual-report-2023/?download=en
4. Uruguay XXI. https://www.uruguayxxi.gub.uy/en/news/article/la-celulosa-desplazo-a-la-carne-bovina-como-principal-producto-de-exportacion-de-uruguay/. 2024. Cellulose displaces beef as Uruguay’s main export product.
5. AgriBrasilis. https://agribrasilis.com/2022/08/24/uruguays-forestry-sector/. 2022. Uruguay’s Forestry Sector Exports US$ 2.5 Billion Each Year.
6. Uruguay XXI. Forestry Sector in Uruguay [Internet]. Montevideo; 2021 Apr [cited 2025 Apr 8]. Available from: https://www.uruguayxxi.gub.uy/uploads/informacion/7fb3e87b60c7c4c1dbbb248c118fe7d1531d6767.pdf
7. BizLatin Hub. https://www.bizlatinhub.com/carbon-neutral-meat-uruguay/. 2024. Uruguay Pioneers Carbon Neutral Meat in South America.
8. Tridge. https://www.tridge.com/news/uruguays-first-carbon-neutral-beef-exported-to-swi. 2022. Uruguay’s first carbon-neutral beef exported to Switzerland.
9. The Rio Times. https://www.riotimesonline.com/brazil-news/rio-politics/uruguay-to-export-first-carbon-neutral-certified-meat-shipment-in-south-america/. 2021. Uruguay to export first certified carbon-neutral meat shipment in South America.
10. Bloomberg. https://www.bloomberg.com/news/articles/2022-05-13/uruguayan-meatpacker-bets-on-consumer-appetite-for-green-beef. 2025. Uruguayan Meatpacker Bets on Appetite for Carbon-Neutral Beef.
11. Minerva Foods. https://minervafoods.com/en/co2-neutral/. 2025. Latin American Carbon Neutral Beef .
12. Allen M, Barros V, Broome J, Cramer W. IPCC Climate Change AR5 Synthesis Report. Climate Change 2014: Synthesis Report Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014;(November).
13. IPCC. Climate Change 2021 – The Physical Science Basis. Cambridge University Press; 2023 Jul.
14. Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2022. Mitigation of Climate Change. Frequently Asked Questions. 2022.
15. del Prado A, Lynch J, Liu S, Ridoutt B, Pardo G, Mitloehner F. Animal board invited review: Opportunities and challenges in using GWP* to report the impact of ruminant livestock on global temperature change. animal. 2023 May;17(5):100790.
16. Köppen W. Das geographische System der Klimate. Handbuch der Klimatologie. W. Köppen, R. Geiger, editors. Vol. 1. Berlin: Gebrüder Borntraeger; 1936.
17. Castaño JP, Giménez A, Ceroni M, Furest J, Aunchayna F. Caracterización agroclimátcia del Uruguay 1980-2009. Montevideo; 2011.
18. Comisión Europea, FAO. Atlas de suelos de América Latina y el Caribe [Internet]. 2014. Available from: http://bookshop.europa.eu
19. Soares de Lima JM. Modelo bio-económico para la evaluación del impacto de la genética y otras variables sobre la cadena cárnica vacuna en Uruguay. 1st ed. Universidad Politécnica de Valencia, editor. Vol. 1. [Valencia]; 2009.
20. Freer M, Dove H, Nolan JV. Nutrient Requirements of Domesticated Ruminants. 1st ed. Freer M, Dove H, Nolan JV, editors. Collingwood VIC, Australia: CSIRO Publishing; 2007.
21. National Research Council. Nutrient Requirements of Beef Cattle. 7th Revised Edition. Academies Press, editor. Washington, D.C.: National Academies Press; 2000.
22. Agricultural Research Council ARC. The Nutrient Requirements of Ruminants Livestock. 7th revised edition. Academies Press, editor. London: Commonwealth Agricultural Bureaux; 1980. 1–351 p.
23. Gere JI, Bualó RA, Perini AL, Arias RD, Ortega FM, Wulff AE, et al. Methane emission factors for beef cows in Argentina: effect of diet quality. New Zealand Journal of Agricultural Research. 2021 Apr 3;64(2):260–8.
24. IPCC. Guidelines for National Greenhouse Gas Inventories. Chapter 10 - Emissions from Livestock and Manure Management. 2006.
25. Bustamante−Silveira M, Siri−Prieto G, Mazzilli SR, Carrasco−Letelier L. Carbon footprint of four bioethanol cropping systems in a temperate region. Renewable and Sustainable Energy . 2023 May 20;
26. Cain M, Jenkins S, Allen MR, Lynch J, Frame DJ, Macey AH, et al. Methane and the Paris Agreement temperature goals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2022 Jan 24;380(2215).
27. Direccion General de Recursos Naturales. https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/politicas-y-gestion/coneat. 2020. Grupos de suelos CONEAT.
28. Methol R. “SAG eucalyptus”: Sistema de apoyo a la gestión de plantaciones de plantaciones de Eucalyptus orientadas a la producción de celulosa en Uruguay. Tacuarembó; 2008.
29. Methol R. SAG grandis: sistema de apoyo a la gestión de Eucalyptus grandis. Tacuarembo; 2003.
30. Rachid-Casnati CHA. “SAG Taeda” : sistema de apoyo a la gestión de plantaciones de pinus taeda. Montevideo; 2015.
31. Rachid-Casnati C, Mason E, Woollons R. Using soil-based and physiographic variables to improve stand growth equations in Uruguayan forest plantations. IForest. 2019 Jun 30;12(3):237–45.
32. Palma-Cancino DJ, Mercado-Zapata , Francisco J., Palma-López , David J., Jasso-Mata , Jesús, Carillo-Ávila , Eugenio, Salgado-García S. Producción de biomasa y extracción de nutrimentos en una plantación de Eucalyptus grandis (Hill ex Maiden) Y Eucalyptus urophylla (S.T. Blake) en ultisoles de México. Agro Productividad. 2019 Jul 10;12(7).
33. Saint-André L, M’Bou AT, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, et al. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manage. 2005 Feb;205(1–3):199–214.
34. Rodrigues-Honda KC da S, Junkes CF de O, Lima JC de, Waldow V de A, Rocha FS, Sausen TL, et al. Carbon Sequestration in Resin-Tapped Slash Pine (Pinus elliottii Engelm.) Subtropical Plantations. Biology (Basel). 2023 Feb 16;12(2):324.
35. SNIG. https://www.snig.gub.uy/principal/snig-principal-institucional-indicadores. 2020. DECLARACIÓN JURADA DE EXISTENCIAS (DICOSE).
36. Oficina de programación y política agropecuaria. Anuario Opypa 2023. Montevideo; 2023.
37. Frame D, Melia N. Offsetting livestock methane with trees: Balancing warming from ruminant methane emissions with cooling from carbon sequestration by forestry. Wellington; 2022.
38. Boadi DA, Wittenberg KM. Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF 6 ) tracer gas technique. Can J Anim Sci. 2002 Jun 1;82(2):201–6.
39. Suzuki T, Sommart K, Angthong W, Nguyen T Van, Chaokaur A, Nitipot P, et al. Prediction of enteric methane emission from beef cattle in Southeast Asia. Animal Science Journal. 2018 Sep 26;89(9):1287–95.
40. Dittmann MT, Runge U, Lang RA, Moser D, Galeffi C, Kreuzer M, et al. Methane Emission by Camelids. PLoS One. 2014 Apr 9;9(4):e94363.
41. Dini Y, Gere JI, Cajarville C, Ciganda VS. Using highly nutritious pastures to mitigate enteric methane emissions from cattle grazing systems in South America. Anim Prod Sci. 2018;58(12):2329.
42. Loza-Balbuena I. Impacts of carbon trading on afforestation projects in Uruguay. [Chistchurch]: Universidad de Canterbury; 2001.
43. Viera M, Rodríguez-Soalleiro R. A Complete Assessment of Carbon Stocks in Above and Belowground Biomass Components of a Hybrid Eucalyptus Plantation in Southern Brazil. Forests. 2019 Jun 27;10(7):536.
44. Resquin F, Navarro-Cerrillo RM, Carrasco-Letelier L, Casnati CR. Influence of contrasting stocking densities on the dynamics of above-ground biomass and wood density of Eucalyptus benthamii, Eucalyptus dunnii, and Eucalyptus grandis for bioenergy in Uruguay. For Ecol Manage. 2019 Apr;438:63–74.
45. Hirigoyen A, Resquin F, Navarro Cerrillo R, Franco J, Rachid Casnati C. Stand biomass estimation methods for Eucalyptus grandis and Eucalyptus dunnii in Uruguay. Bosque (Valdivia). 2021;42(1):53–66.
46. Resquin F, Navarro-Cerrillo RM, Carrasco-Letelier L, Casnati CR, Bentancor L. Evaluation of the nutrient content in biomass of Eucalyptus species from short rotation plantations in Uruguay. Biomass Bioenergy. 2020 Mar;134:105502.
47. Mello SL de M, Gonçalves JL de M. Equações para estimar a biomassa da parte aérea e do sistema radicular em povoamentos de Eucalyptus grandis em sítios com produtividades distintas. Revista Árvore. 2008 Feb;32(1):101–11.
48. Dirección Forestal. Cartografía Nacional Forestal . Montevideo; 2021.
49. Gonzalez Chaves MD, Resquín F, Balmelli G. Performance of Eucalyptus tereticornis provenances in subtropical climate. Agrociencia Uruguay. 2021 Apr 12;25(1):e322.
50. Tarigo F. Propiedades físicas y mecánicas de Eucalyptus tereticornis. In: Eucaliptos colorados: mejoramiento genético, propiedades y uso de la madera. Serie de Actividades de Difusion 557. Montevideo: INIA; 2008. p. 1–8.
51. Doldan J, Fariña I, Tarigo F. Utilización de Eucalyptus spp. Alternativas de plantaciones Uruguayas para pulpa Kraft. Innotec . 2008;30–4.
52. Resquin F, Baez K, de Freitas S, Passarella D, Coelho-Duarte AP, Rachid-Casnati C. Impact of Thinning on the Yield and Quality of Eucalyptus grandis Wood at Harvest Time in Uruguay. Forests. 2024 May 4;15(5):810.
53. RED+ Uruguay. Paquete de preparación RED+ Uruguay para el fondo cooperativo para el carbono de los bosques. Montevideo; 2022.
54. Paruelo J, Ciganda V, Gasparri I, Panizza A. OPORTUNIDADES Y DESAFÍOS DEL USO DE LOS BOSQUES NATIVOS INTEGRADOS A LA PRODUCCIÓN GANADERA DE URUGUAY. INIA Serie técnica. 2022 Mar 10;261.
55. Hollinger DY, Maclaren JP, Beets PN, Turland J. CARBON SEQUESTRATION BY NEW ZEALAND’S PLANTATION FORESTS. Vol. 23, New Zealand Journal of Forestry Science. 1993.
56. Dieguez Cameroni FJ, Varela Casadey F, Boscana M, Schinatto F, Bussoni A. Advancing carbon neutrality in Silvopastoral systems: a case study applying agent-based modeling. Agroforestry Systems. 2024 Oct 15;98(7):2209–24.
57. Journeaux PR. Pros and Cons of Using Forestry as a Compensation Mechanism for Greenhouse Gases Emissions on New Zealand Pastoral Farms. In: XII Congreso Internacional Sistemas Silvopastoriles. Montevideo; 2023. p. 1073–88.
58. Doran-Browne N, Wootton M, Taylor C, Eckard R. Offsets required to reduce the carbon balance of sheep and beef farms through carbon sequestration in trees and soils. Anim Prod Sci. 2018;58(9):1648.
59. Mayberry D, Bartlett H, Moss J, Davison T, Herrero M. Pathways to carbon-neutrality for the Australian red meat sector. Agric Syst. 2019 Oct;175:13–21.
60. Grace PR, Basso B. Offsetting greenhouse gas emissions through biological carbon sequestration in North Eastern Australia. Agric Syst. 2012;105(1).
61. Monteiro A, Barreto-Mendes L, Fanchone A, Morgavi DP, Pedreira BC, Magalhães CAS, et al. Crop-livestock-forestry systems as a strategy for mitigating greenhouse gas emissions and enhancing the sustainability of forage-based livestock systems in the Amazon biome. Science of The Total Environment. 2024 Jan;906:167396.
62. de Souza KW, Pulrolnik K, Júnior RG, Marchão RL, VL, de CAM, AG, P de MMS, de Oliveira AD. Offsetting greenhouse gas (GHG) emissions through crop-livestock-forest integration. Circular Técnica 43. 2020.
63. Resende L de O, Müller MD, Kohmann MM, Pinto LFG, Cullen Junior L, de Zen S, et al. Silvopastoral management of beef cattle production for neutralizing the environmental impact of enteric methane emission. Agroforestry Systems. 2020 Jun 7;94(3):893–903.
64. Allen MR, Shine KP, Fuglestvedt JS, Millar RJ, Cain M, Frame DJ, et al. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. NPJ Clim Atmos Sci. 2018 Jun 4;1(1):16.
65. Kreibich N, Hermwille L. Caught in between: credibility and feasibility of the voluntary carbon market post-2020. Climate Policy. 2021 Aug 9;21(7):939–57.
66. López-Vallejo M. Non-additionality, Overestimation of Supply, and Double Counting in Offset Programs: Insight for the Mexican Carbon Market. In 2022. p. 191–221.
67. Robin Hicks. Legal complaint filed against Korean industry giants for greenwashing by double-counting emissions cuts. Eco Business. 2024 Mar 11;
68. Raji K. Is Carbon Offset a Form of Greenwashing? Earth.org. 2023 Aug 5;
69. Silveira L, Alonso J, Martínez L. Efecto de las plantaciones forestales sobre el recurso agua en el Uruguay. Agrociencia. 2006 Dec;10(2):75–93.
70. Woo J, Fatima R, Kibert CJ, Newman RE, Tian Y, Srinivasan RS. Applying blockchain technology for building energy performance measurement, reporting, and verification (MRV) and the carbon credit market: A review of the literature. Build Environ. 2021 Nov;205:108199.
71. Sebastián Rodríguez López. Así es la carne carbono neutral uruguaya. Revista Forestal. 2022 Sep 24;26–32.
Copyright (c) 2025 Juan Manuel Soares de Lima

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.