Comparative evaluation of medullation types and their respective fiber diameter in alpacas from seven regions of Peru
Abstract
Alpaca fibers may be classified according to the presence of medullation, into fibers with continuous (ContMed), discontinuous (DiscMed), fragmented (FragMed), strongly medullated (StrMed) and fibers without medulla (NoMed). ContMed and StrMed may cause prickling and issues during dyeing and are less resistant in textile processing, therefore they should be eliminated from fleece. Thus, to produce more comfortable alpaca fibers, it is essential to establish a baseline, and for this reason, this research aimed to evaluate the incidence of fibers according to medullation type and their respective average fiber diameters (AFD) in Peruvian regions. Samples of alpaca fibers were collected from Apurímac, Arequipa, Cusco, Huancavelica, Junín, Pasco and Puno, which were analyzed using the Fiber Med equipment of the Textile Fiber Laboratory of the Natural Fiber´s Tech SAC, a Technological Research and Development Center. The variables did not have a normal distribution, then for statical analysis, nonparametric techniques were applied. The means of the percentage of medullation (%) and fiber diameters (µm) were: 61.87% - 19.12µm; 16.84% - 22.62µm; 7.56% - 24.87 µm; 13.23% - 28.56µm; and 0.50 - 45. 69µm for NoMed, FragMed, DiscMed, ContMed y StrMed respectively; showing greater variation in medullation than AFD. The geographical region, type of owner and age category of animals showed a significant effect (p<0.05) on all variables. On the other hand, ContMed was similar between breeds, sex only influenced FragMed; the AFD_FragMed and AFD_StrMed were also not influenced by breed, also the sex did not show differences for AFD_StrMed. The percentages of medullation and the fiber diameters of alpacas from the seven Peruvian regions maintain high variability by location, age, type of owner, breed and sex; furthermore, there is a positive correlation between the percentage of medullation and its fiber diameters, with ContMed and StrMed fibers showing greater diameters.
Downloads
References
2. Aruquipa M. 2015. Evaluación de la calidad de fibra de alpaca Huacaya (Vicugna pacos) en dos localidades del municipio de Catacora departamento de La Paz. Tesis de Ingeniero Agrónomo. La Paz Universidad Mayor de San Andrés. En: T-2167.pdf;jsessionid=87981AF7E542074B34C65FE9372CF04D (umsa.bo)
3. Aylan-Parker J, McGregor BA. 2002. Optimising sampling techniques and estimating sampling variance of fleece quality attributes in alpacas. Small Ruminant Res 44(1):53-64. DOIoi: 10.1016/S0921-4488(02)00038-X.
4. Balasingam A, Mahar TJ. 2005. Status report on dark & medullated fibre testing of presale core samples and review of the detection threshold. International Wool Textile Organization – IWTO 1-14.
5. Berolatti G, Ruiz L, Cabrera FA, Aliaga J, Quispe MD, Quispe EC. 2021. Evaluación de la medulación de fibras de lanas y fibras especiales de algunas especies de animales. Rev Investig Vet Peru 32(5):17639. DOI: 10.15381/RIVEP.V32I5.17639.
6. Cruz A, Morante R, Gutiérrez JP, Torres R, Burgos A, Cervantes I. 2019. Genetic parameters for medullated fiber and its relationship with other productive traits in alpacas. Animal 13(7):1358-1364. DOI: 10.1017/S1751731118003282.
7. Cruz A, Murillo Y, Burgos A, Yucra A, Morante R, Quispe M, Quispe C, Quispe E, Gutiérrez JP. 2024. Genetic parameters for different types of medullated fibre in alpacas. J Anim Breed Genet DOI: 10.1111/JBG.12861.
8. Czaplicki Z. 2012. Properties and structure of Polish alpaca wool. Fibres Text East Eur 1(90):8-12.
9. Gupta NP, Arora RK, Verma GK. 1981. An assessment of the characteristics of medullated and non-medullated wool fibres. Indian J Text Res 6:92-95.
10. Hunter L. 1993. Mohair: A review of its properties processing and applications. South África CSIR division of textile technology.
11. Hunter L, Smuts S, Botha AF. 2013. Characterizing visually objectionable and nonobjectionable medullated fibers in mohair. J Nat Fibers 10(2):112-135. DOI: 10.1080/15440478.2013.763483.
12. IWTO. 2017. Method of determining fibre diameter distribution parameters and percentage of medullated fibres in wool and other animal fibres by the projection microscope, IWTO-8-04. En: IWTO, eds. Red Book: The Test Methods, International Wool Textile Organization, p. 1.19.
13. Kruskal WH, Wallis WA. 1952. Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583. DOI: 10.2307/2280779.
14. Lozano F, Pinares R, Ccopa R. 2023. Blanqueamiento de fibra con peróxido de hidrógeno y porcentaje de medulación en alpaca huacaya negra y marrón. Rev Investig Vet Peru 34(3):e25486. DOI: 10.15381/rivep.v34i3.25486.
15. Lupton CJ, McColl A, Stobart RH. 2006. Fiber characteristics of the Huacaya alpaca. Small Ruminant Res 64(3): 211-224. Doi: 10.1016/J.SMALLRUMRES.2005.04.023.
16. Lupton CJ, Pfeiffer FA, Blakeman NE. 1991. Medullation in mohair. Small Ruminant Res 5(4):357-365. DOI: 10.1016/0921-4488(91)90073-Y.
17. Markova I. 2019. Textile fiber microscopy: A practical approach. First Edition, San Francisco, USA. John Wiley & Sons Ltd. 212 p. DOI: 10.1002/9781119320029.
18. McGregor BA. 2002. Comparative productivity and grazing behaviour of Huacaya alpacas and peppin merino sheep grazed on annual pastures. Small Ruminant Res 44(3): 219-232. DOI: 10.1016/S0921-4488(02)00050-0.
19. McGregor BA. 2006. Production attributes and relative value of alpaca fleeces in southern Australia and implications for industry development. Small Ruminant Res 61(2-3): 93-111. DOI: 10.1016/J.SMALLRUMRES.2005.07.001.
20. Min Z, Wenxin Z, Le W, Weiming G, Huafeng C, Ping G, Xin H, Yang G, Habuduola K, Yusufu A. 2020. Study on quality traits of alpaca wool in different regions and body parts. Chin Animal Husb Vet Med 47(11): 3602-3610. DOI: 10.16431/J.CNKI.1671-7236.2020.11.022.
21. Moore K. 2015. The impact of fleece characteristics on insulation and heat exchange and the consequential effect on vitamin D of alpacas in southern Australia. Tesis para optar grado de doctor. Perth: The University of Western Australia. 152 p.
22. Olarte D C, Calsin B, Oros O, Ormachea E. 2023. Variación del diámetro y porcentaje de medulación en la fibra de alpacas Huacaya (Vicugna pacos). Rev Investig Vet Peru 34(6): e26957. DOI: 10.15381/rivep.v34i6.26957.
23. Ormachea E, Bustinza J, Calsin B, Nina J, Cano D, Gonzales I, Calapuja H. 2024. Effect of Age and Sex on Medullation Types and Fiber Characteristics in Huacaya Alpaca. Indian J Anim Res 58(8): 1253-1259.
24. Paucar-Chanca R, Alfonso-Ruiz L, Soret-Lafraya B, Mendoza-Ordoñez G, Alvarado-Quezada F. 2019. Textile characteristics of fiber from Huacaya alpacas (Vicugna pacos). Sci Agropecu 10(3): 429-432. DOI: 10.17268/sci.agropecu.2019.03.14.
25. Paucar Y, Quispe MD, Hunter L, Quispe EC. 2024. Evaluación de la medulación de fibras de alpaca visualmente objetables. En III Seminario internacional en producción sostenible en camélidos sudamericanos: Asegurando la biodiversidad. Universidad Nacional Agraria La Molina (ed.). Lima s.e. p. 171-171.
26. Pinares R, Gutiérrez GA, Cruz A, Burgos A, Gutiérrez JP. 2019. Variabilidad fenotípica del porcentaje de fibras meduladas en el vellón de alpaca Huacaya. Rev Investig Vet Peru 30(2): 699-708. DOI: 10.15381/RIVEP.V30I2.16098.
27. Pinares R, Gutiérrez GA, Cruz A, Morante R, Cervantes I, Burgos A, Gutiérrez JP. 2018. Heritability of individual fiber medullation in Peruvian alpacas. Small Ruminant Res 165: 93-100. DOI: 10.1016/J.SMALLRUMRES.2018.04.007.
28. Pinares R, Meza A, Crispín N, Lozano F, Pezo D. 2023. Comparing fiber quality characteristics and staple length in Suri and Huacaya alpacas. Front Anim Sci 4: 1167113. DOI: 10.3389/FANIM.2023.1167113/BIBTEX.
29. Pinares R, Quispe EC 2024. Características de las fibras meduladas en alpaca Huacaya y Suri. Chilean J Agric Anim Sci 40(2): 332-340.
30. Quispe EC, Quispe MD, Quispe CC. 2020. Equipo y procedimiento de un medulador electrónico inteligente de fibras de origen animal. PE20201438 (A1). Patente de invención. https://lp.espacenet.com/publicationDetails/originalDocument?CC=PE&NR=20201438A1&KC=A1&FT=D&ND=3&date=20201209&DB=&locale=es_LP
31. Quispe E, Quispe M, Quispe C, Poma A, Paucar-Chanca R, Cruz A, McGregor BA. 2022. Relationships between the incidence and degree of medullation with the diameter of alpaca fibers evaluated using a novel device based on artificial intelligence. J Text I 114 (7): 1016-1031. DOI: 10.1080/00405000.2022.2105110.
32. Quispe MD, Quispe CC, Serrano-Arriezu L, Trigo JD, Bengoechea JJ, Quispe EC. 2023. Development and validation of a smart system for medullation and diameter assessment of alpaca llama and mohair fibres. Animal 17 (5). DOI: 10.1016/J.ANIMAL.2023.100800.
33. Quispe M, Serrano-Arriezu L, Trigo JD, Quispe C, Gutiérrez A, Quispe E. 2022. Application of artificial intelligence and digital images analysis to automatically determine the percentage of fiber medullation in alpaca fleece samples. Small Ruminant Res 213: 106724. DOI: 10.1016/J.SMALLRUMRES.2022.106724.
34. Quispe-Peña, E., Quispe-Bonilla, M. 2024. Nuevos criterios de selección en alpacas Huacaya. En: Libro de Resúmenes del III Seminario Internacional en Producción Sostenible en Camélidos Sudamericanos. Presentado en UNALM, La Molina, Lima, pp. 146–158.
35. Radzik-Rant A, Wielechowska M, Rant W, Carcangiu V, Mcgregor B. 2021. Variation in wool characteristics across the body in a herd of alpacas kept in Poland. Animals 11(10): 2939. DOI: 10.3390/ANI11102939.
36. Radzik-Rant A, Wiercińska K. 2021. Analysis of the wool thickness and medullation characteristics based on sex and color in a herd of alpacas in Poland. Arch Anim Breed 64 (1): 157. DOI: 10.5194/AAB-64-157-2021.
37. Sánchez AL, Urioste JI, Peñagaricano F, Neimaur K, Sienra I, Naya H, Kremer R. 2016. Genetic parameters of objectionable fibers and of their associations with fleece traits in Corriedale sheep. J Anim Sci 94: 13-20. DOI: 10.2527/jas.2015-9619
38. Tan K, Adeniyi OO, Letko A, RuddGarces G, Manz E, Wagner H, Zanolari P, Drögemüller C, Lühken G. 2023. Identification of genomic regions associated with differences in fleece type in Huacaya and Suri alpacas (Vicugna pacos). Anim Genet 55 (1): 163-167. DOI: 10.1111/AGE.13377.
39. Tridico SR. 2009. Natural animal textile fibres: Structure characteristics and identification. En: Max M. Houck, eds. Identification of Textile Fibers. Woodhead Publishing. p. 27-67 DOI: 10.1533/9781845695651.1.27.
40. Villarroel J. 1963. Un estudio de la fibra de alpaca I parte. An Cient (3): 247-274.
41. Wang H, Liu X, Wang X. 2005. Internal structure and pigment granules in colored alpaca fibers. Fiber Polym 6(3): 263-268. DOI: https: 10.1007/BF02875652/METRICS.
42. Wilson JF. 1929. The medullated wool fiber. Hilgardia 4(5): 135-152. DOI: 10.3733/HILG.V04N05P135.
Copyright (c) 2025 Edgar Carlos Quispe Pena, Rubén Pinares, Virgilio Machaca, Max David Quispe Bonilla

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.