Metabolic effects of strategic supplementation with capsaicin-rich extract in dairy cows in the dry tropics
Abstract
Supplementation with bioactive products aims to improve production parameters and impact the overall health of the animal. Such is the case with capsaicin-rich compounds, which have positive reports on animal production. Therefore, the objective of this study was to evaluate the effect of the capsaicin-rich extract on production and health parameters in dairy cows. The study was conducted at the Entre Ríos Experimental Farm in the state of Bahia, Brazil. A total of 24 crossbred dairy animals were used, divided into two groups: a control group and a second group that received a capsaicin-rich extract in their daily feed. The experiment lasted 42 days, beginning on the first day of supplementation. Blood was collected weekly for complete blood count and biochemical analysis, and dry matter intake and voluntary water consumption were theoretically estimated. The results indicated a significant group effect (P < 0.05) for the serum albumin parameter. There was a significant group x time interaction (P < 0.05), for the milk production parameters, protein production kg/day, lactose, total solids, total solids without fat, hematocrit and number of red cells. In addition, the estimate of dry matter and water intake indicates a tendency to increase in the group supplemented with the capsaicin-rich extract. In conclusion, the results indicate that there is an effect of capsaicin on animal metabolism, which, according to previous studies, points to the modulation of the ruminal microbiota, a decrease in the albumin-ghrelin complex, the action of the vagus nerve and TRPV1 receptors that cause a change in ingestive behavior, as well as in the production of microbial protein and propionate.
Downloads
References
Hernández-Pérez, T.; Gímez-García, M.R.; Valverde, M.E.; Paredes-López, O. Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr Rev Food Sci Food Saf. 2020 ,2 19,2972–2993.
Ruiz-Hernández, S.C.; Carrillo-Rodríguez, J.C.; Vera-Guzmán, A.M.; Chávez-Servia, J.L.; Aquino-Bolaños, E.N.; Alba-Jiménez, J.E.; Vásquez Davila, M.A. Agromorphological Trair and Bioactive Compounds of Four Mexican Chili Peppers (Capsicum annuum var. annuum L.). AJFAND 2023, 23 (9), 24487-24506.
Hall, R.D.; Yeoman, M.M.. The influence of intracellular pools of phenylalanine derivatives upon the synthesis of capsaicin by immobilized cell cultures of the chili pepper, Capsicum frutescens. Planta 1991, 185 (1), 72-80
Damaralam Sahid, Z.; Syukur, M.; Maharijaya, A.; Nurchilis, W. Total phenolic and flavonoid contents, antioxidant, and α-glucosidase inhibitory activities of several big chili (Capsicum annuum L.) genotypes. Cienc. Rural 2023, 53 (7),1-8.
Yang,S.; Liu, L.; Meng, L, Hu, X. Capsaicin is beneficial to hyperlipidemia, oxidative stress, endothelial dysfunction, and atherosclerosis in Guinea pigs fed on a high-fat diet. Chem. -Biol. Interact. 2019, 297, 1–7
Antunes, M.M.; Coelho, B.S.L.; Vichi, T.M.; Santos, E.A.; Gondum, F.K.B.; Diniz, A.B.; Aguilar, E.C.; Cara, D.C.; Porto, L.C.J.; Castro, I.C.; Leite, A.J.I.; Teixeira, L.G. Oral supplementation with capsaicin reduces oxidative stress and IL-33 on a food allergy murine model. WAOjournal 2019, 12 (1), 100045.
Vittorazi Jr, P.C.; Takiya, C.S.; Nunes, A.T.; Chesini, R.G.; Bugoni, M.; Silva, G.G.; Silva, T.B.P.; Días, M.S.S.; Grigoletto, N.T.S.; Rennó, F.P. Feeding encapsulated pepper to dairy cows during the hot season improves performance without affecting core and skin. J. Dairy Sci. 2022, 105,9542–9551.
Oh, J.; Harper, M.T.; Melgar, A.; Räisänen, S.; Chen,X.; Nedelkov, K.; Fetter, M.; Ott, T.; Wall, E.H.; Hristov, A.N. Dietary supplementation with rumen-protected capsicum during the transition period improves the metabolic status of dairy cows. J. Dairy Sci. 2021, 104,11609–11620.
[An, Z.; Zhang, X.; Gao, S.; Zhou, D.; Riaz, U.; Abdelrahman, M.; Hua, G.; Yang, L. Effects of Capsicum Oleoresin Supplementation on Lactation Performance, Plasma Metabolites, and Nutrient Digestibility of Heat Stressed Dairy Cow. Animals 2022, 12, 797.
Oh, J.; Giallongo, F.; Frederick, T.; Pate, J.; Walusimbi, S.; Elias, R.J.; Hall, E.H.; Bravo, D.; Hristov, A.N. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows. J. Dairy Sci. 2015, 98 (1):1–13.
Foskolos, A.; Ferret, A.; Siurana, A.; Castillejos, L.; Calsamiglia, S. Effects of Capsicum and Propyl-Prooane Thiosulfonate on Rumen Fermentation, Digestion, and Milk Production and Composition in Dairy Cows. Animals. 2020, 10, 859, 1-14.
Van Gastelen, S.; Yáñez-Ruiz, D.; Khelil-Arfa, H.; Blanchard, A.; Bannink, A. Effect of a blend of cinnamaldehyde, eugenol, and Capsicum oleoresin on methane emission and lactation performance of Holstein-Friesian dairy cows. J Dairy Sci. 2024, 107 (2): 857-869.
Cardozo, P.W.; Calsamiglia, S.; Fettet, A.; Kamel, C. Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. J. Anim. Sci. 2006, 84,2801–2808.
Sklan, D.; Ashkenazi, R.; Braun, A.; Devorin, A.; Tabori, K. Fatty acids, calcium soaps of fatty acids and cottonseeds fed to high yielding cows. J. Dairy Sci. 1992, 75, 2463- 2472.
NRC Nutrient requirement of dairy cow. National Academy Press: United States 2001
AOAC Official Methods of Analysis. The Association of Official Analytical Chemists: Rockville, United States 2000.
Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. Journal of AOAC International 2002, 85, 1217-1240.
Hall, M.B. Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. Bulletin 339, University of Florida: Florida, United States, 2000. Pages 1–25.
Weiss, W.P.; Conrad, H.R.; Pierre, N.R.S.T.A. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim Feed Sci Technol 1992, 39, 95-110.
Mutimura, M.; Ebong, C.; Rao, I.M.; Nsahlai, I.V. Effects of supplementation of Brachiaria brizantha cv. Piatá and Napier grass with Desmodium distortum on feed intake, digesta kinetics and milk production in crossbred dairy cows. Animal Nutrition 2018, 4, 222-227.
Gross, J.J. Dairy cow physiology and production limits. Animal front. 2023, 13 (3),44-50.
Silvestre, T.; Räisänen, S.E.; Cueva, S.F.; Wasson, D.E.; Lage, C.F.A.; Martins, L.F.; Wall, E.; Hristov, A.N. Effects of a combination of Capsicum oleoresin and clove essential oil on metabolic status, lactational performance, and enteric methane emissions in dairy cows. J. Dairy Sci. 2022, 105,9610–9622.
Ujita, a.; Negrão, J. A.; Vercesi Filho, A.E.; Fernandes, A.R.; El Faro, L. Milk lactoferrin and milk [27] Ormston, S.; Davis, H.; Butler, G.; Chatzidimitriou, E.; Theodoridou, K.; Huws, S.; Yan, T.; Leifert, C.; Stergiadis. Productivity, efficiency and milk fatty acid profile of Jersey crossbred cows in low-input dairy system. Animal- Science Proceedings 2022, 13: 1-119.
Ormston, S,; Davis, H.; Butler, G.; Chatzidimitriou, E.; Theodoridou, K.; Huws, S.; Yan, T.; Leifert, C.; Stergiadis, S. Productivity, efficiency and milk fatty acid profile of Jersey crossbred cows in low-input dairy systems. Animal - Science Proceedings 2022, 13, 1-119.
Charton, C.; Guinard-Flament, J.; Lefebvre, E.; Barbey, S.; Gallard, Y.; Boichard, D.; Larroque, H. Genetic parameters of milk production traits in response to a short once-daily milking period in crossbred Holstein x Normande dairy cows. J. Dairy. Sci 2018., 101: 2235-2247.
Kozerski, N.D.; Signoretti, R.D.; Souza, J.C.; Daley, V.S.; Freitas, J.A. Use of monensin in lactating crossbred dairy cows (Holstein x Gyr) raised on tropical pastures with concentrate supplementation. JAST 2017, 232, 119-128.
Jayawardana, J.M.D.R.; Lopez-Villalobos, N.; McNaughton, L.R.; Hickson, R.E. Heritabilities and genetic and phenotypic correlations for milk production and fertility traits of spring-calved once-daily or twice-daily milking cows in New Zealand. J. Dairy Sci. 2023, 106,1910–1924.
Cardoso, F.F.; Donkin, S.S.; Pereira, M.N.; Pereira, R.A.N.; Peconick, A.P.; Santos, J.P.; Silva, R.B.; Caproni, V.R.; Parys, C.; Danes, M.A.C. Effect of protein level and methionine supplementation on dairy cows during the transition period. J. Dairy Sci 2021, 104: 5467-5478.
Fandiño, I.; Calsamiglia, S.; Ferret, A.; Blanch, M. Anise and capsicum as alternatives to monensin to modify rumen fermentation in beef heifers. JAST 2008, 145, 409-417
Rodríguez-Prado, M.; Ferret, A.; Zwieten, J.; Gonzalez, L.; Bravo, D.; Calsamiglia, S. Effects of dietary addition of capsicum extract on intake, water consumption, and rumen fermentation of fattening heifers fed a high. Concentrate diet. J. Anim. Sci 2012, 90, 1-6.
Silva, R.B.D.; Pereira, M.N.; Araujo, R.C.D.; Silva, W.D.R.; Pereira, R.A.N. A blend of essential oils improved feed efficiency and affected ruminal and systemic variables of dairy cows. Transl. Anim. Sci. 2020, 4,182–193.
Temmar, R.; Rodríguez-Prado, M.; Forgeard, G.; Rougier, C.; Calsamiglia, S. Interactions among Natural Active Ingredients to Improve the Efficiency of Rumen Fermentation In Vitro. Animals 2021, 11, 1205.
Zafra, M.A.; Molina, F.; Puerto, A. Effects of perivagal administration of capsaicin on post-surgical food intake. Auton. Neurosci. 2003, 107, 37–44.
Huang, H.; Lechniak, D.; Szumacher-Strabel, M.; Patra, A.K.; Kozłowska, M.; Kolodziejski, P.; Gao, M.; Ślusarczyk, S.; Petriĉ, D.; Cieslak, A. The effect of ensiled paulownia leaves in a high‑forage diet on ruminal fermentation, methane production, fatty acid composition, and milk production performance of dairy cows. J. Anim. Sci. and Biotechnology 2022, 13,104.
Oh, J.; Harper, M.; Giallongo, F.; Bravo, D.M.; Wall, E.H.; Hristov, A.N. Effects of rumen-protected Capsicum oleoresin on productivity and responses to a glucose tolerance test in lactating dairy cows. J. Dairy Sci. 2017, 100,1888–1901.
Spector, M.P.2009. Encyclopedia of Microbiology (Third Edition) Pages 242-264
Harmon, R. J. Mastitis and genetic evaluation for somatic cell count. J. Dairy Sci. 1994, 77, 2103–2112.
.
Roa-Vega, M. L; Ladino-Romero, E.A; Hernández-Martínez, M. C. Indicadores de bioquímica sanguínea en bovinos suplementados con Cratylia argentea y Saccharomyces cerevisiae. Pastos y Forrajes 2017, 40 (2)
Ferreira, L.G.B.; Faria, J.V.; Santos, J.P.S.; Faria, R.X. Capsaicin: TRPV1-independent mechanisms and novel therapeutic possibilities. Eur. J. Pharmacol. 2020, 887 (1), 173356.
Patowary, P.; Pathak, M.P.; Zaman, K.; Raju, P.S.; Chattopadhyay, P. Research progress of capsaicin responses to various pharmacological challenges. Biomed Pharmacother 2017, 96 (1): 1501-1512.
Heather, C.; Bora, I.; Ma, L.; Zheng, J.; Schaefer, S. TRPV1 Channels are involved in niacin-induced cutaneous vasodilation in mice. J. Cardiovasc. Pharmacol. 2015, 65 (2), 184-191.
Wang, L.; Luo, M.; Wang, Y.; Galligan, J.; Wang, D.H. Impaired vasodilation in response to perivascular nerve stimulation in mesenteric arteries of TRPV1-null mutant mice. J. Hypertens 2006, 24 (12), 2399-2408.
Mion, B.; Madureira, G.; Spricigo,J.F.W.; King, K.; Van Winters, B.; LaMarre, J.; LeBlanc, S.J.; Steele, M.A.; Ribeiro, E.S. Effects of source of supplementary trace minerals in pre-and postpartum diets on reproductive biology and performance in dairy cows. J. Anim. Sci. 2023, 106:5076-5095.
Copyright (c) 2025 Mónica Madrigal, Marcus Vínicius Galvão Loiola, José Esler Freitas Junior, Murilo Ramos Santiago, Lara Lôbo Dantas, Artur Azevedo Menezes

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.