Degradation kinetics and ruminal digestibility of two protein sources evaluated by in vitro and in situ methods

  • Ulises Cañaveral-Martínez Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia No. 2 de la Universidad Autónoma de Guerrero https://orcid.org/0000-0002-7652-2345
  • Paulino Sánchez-Santillán Facultad de Medicina Veterinaria y Zootecnia No. 2. Universidad Autónoma de Guerrero https://orcid.org/0000-0001-8639-1476
  • Marcelino Gómez-Trinidad Facultad de Medicina Veterinaria y Zootecnia No. 2, Universidad Autonoma de Guerrero
Keywords: in vitro, in situ, degradation, digestibility, coconut paste, cacahuananche paste., in vitro, in situ, degradation, digestibility, coconut paste, cacahuananche paste

Abstract

This study compared the bromatological values, in vitro degradation, and in situ digestibility of coconut (Cocos nucifera L.) and cacahuananche (Gliricidia sepium L.) pastes to assess their biological values and potential relevance  for in vivo testing. The study was conducted at the Animal Nutrition Laboratory, Faculty of Veterinary Medicine and Zootechnics at the Autonomous University of Guerrero, Mexico. Samples were analyzed in a completely randomized design using InfoStat software, with mean differences determined by Tukey’s test (P < 0.05). Bromatological analysis showed that both pastes had similar contents of dry matter, ash, and organic matter (P > 0.05). cacahuananche paste had 159 % more crude protein, while coconut paste contained 151 % more neutral detergent fiber and 136% more acid detergent fiber (P < 0.05). In the in vitro assay, cacahuanache paste exhibited higher dry matter degradability at 12, 24, and 48 hours, whereas coconut paste showed higher degradation at 72 hours (P < 0.05). In situ digestibility kinetics indicated that cacahuananche paste had significantly higher fractions and a positive correlation compared to coconut paste (P < 0.05). In conclusion, cacahuananche paste, compared to coconut paste, presents a promising alternative protein source for ruminants, warranting further in vivo studies to confirm its effectiveness in formulated diets.

Downloads

Download data is not yet available.

References

AOAC. (2005). Official Methods of Analysis of AOAC INTERNATIONAL. Journal of the Association of Official Agricultural Chemists., 18.

Aye, P., & Adegun, M. (2013). Chemical Composition and some functional properties of Moringa, Leucaena and Gliricidia leaf meals. Agriculture and Biology Journal of North America, 4(1), 71-77. https://doi.org/10.5251/abjna.2013.4.1.71.77

Castañeda-Serrano, R. D., Velez-Giraldo, A. M., Pardo-Guzman, J. A., Tovar-Urrea, V., & Mogollon-Vergara, D. C. (2023). P78 Rumen kinetics and digestibilily in diets with differents levels of natural extracts of Gliricidia sepium and Guazuma ulmifolia. Animal - science proceedings, 14(4), 650. https://doi.org/https://doi.org/10.1016/j.anscip.2023.04.173

Edwards, A., Mlambo, V., Mnisi, C. M., & Hughes, M. P. (2024). Mature fruits of Gliricidia sepium and Leucaena leucocephala plants have potential as inexpensive protein and mineral supplements for ruminants [Article]. Agroforestry Systems. https://doi.org/10.1007/s10457-024-01066-8

FAO. (2023). La seguridad alimentaria y el comercio agroalimentario en américa latina y el caribe. Santiago, https://doi.org/10.4060/cc8592es

FEDNA. (2019). Composición y valor nutritivo de alimentos para la fabricación de piensos compuestos Fundación Española para el Desarrollo de la Nutrición Animal., 4, 604.

Honan, M., Feng, X., Tricarico, J. M., & Kebreab, E. (2021). Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. Animal Production Science, 62(14), 1303-1317. https://doi.org/10.1071/an20295

Huda, A. N., Sabarudin, A., Jayanegara, A., & Soetanto, H. (2023). Fermentation parameters in the rumen of goats supplemented with polyphenol oxidase derived from Gliricidia sepium leaves under in vitro conditions [Article]. Biodiversitas, 24(6), 3282-3290. https://doi.org/10.13057/biodiv/d240622

Lee-Rangel, H. A., Valladolid, A. V., Mendez-Cortes, H., Garcia-Lopez, J. C., Álvarez-Fuentes, G., Roque-Jimenez, J. A., Mejia-Delgadillo, M. A., Negrete-Sánchez, L. O., Cifuentes-López, O., & Ramírez-Tobías, H. M. (2021). Influence of copra meal in the lambs diet on in vitro ruminal kinetics and greenhouse gases production [Article]. Agriculture (Switzerland), 11(10), Article 925. https://doi.org/10.3390/agriculture11100925

McDonald, I. (1981). A revised model for the estimation of protein degradability in rumen. J Agr Sci 96, 251-252.

NOM-062-ZOO. (1999). NORMA OFICIAL MEXICANA, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio.

NRC. (2001). Nutrient Requirements of Dairy Cattle. National Academy Press, 7, 43-104.

Pazla, R., Zain, M., Tanuwiria, U. H., Putri, E. M., Makmur, M., Zahera, R., Sari, L. A., Afnan, I. M., Rosmalia, A., Yulianti, Y. I., Putri, S. D., Mushawwir, A., & Apriliana, R. A. (2023). Evaluation of Rumen Degradable Protein Values from Various Tropical Foliages Using in Vitro and in Situ Methods [Article]. International Journal of Veterinary Science, 12(6), 860-868. https://doi.org/10.47278/journal.ijvs/2023.045

Peng, K., Gresham, G. L., McAllister, T. A., Xu, Z., Iwaasa, A., Schellenberg, M., Chaves, A. V., & Wang, Y. (2020). Effects of inclusion of purple prairie clover (Dalea purpurea Vent.) with native cool-season grasses on in vitro fermentation and in situ digestibility of mixed forages. J Anim Sci Biotechnol, 11, 23. https://doi.org/10.1186/s40104-019-0418-6

Posada, S. L., & Noguera, R. R. (2005). Técnica in vitro de producción de gases: unaherramienta para la evaluación de alimentos para rumiantes LRRD, 17, 4. https://doi.org/http://lrrd.cipav.org.co/lrrd17/4/posa17036.htm

Punzalan, J. K. M., & Rosentrater, K. A. (2024). Copra Meal: A Review of Its Production, Properties, and Prospects [Review]. Animals, 14(11), Article 1689. https://doi.org/10.3390/ani14111689

Ramin, M., Lerose, D., Tagliapietra, F., & Huhtanen, P. (2015). Comparison of rumen fluid inoculum vs. faecal inoculum on predicted methane production using a fully automated in vitro gas production system. Livestock Science, 181, 65-71. https://doi.org/10.1016/j.livsci.2015.09.025

Romero-Sáez, M. (2022). Los residuos agroindustriales, una oportunidad para la economía circular. TecnoLógicas, 25, 50-54.

Rosero, N. R., & Posada-Ochoa, S. L. (2007). Modelación de la cinética de degradación de alimentos para rumiantes. Rev Col Cienc Pec 20, 174-182.

Van Amburgh, M. E., Collao-Saenz, E. A., Higgs, R. J., Ross, D. A., Recktenwald, E. B., Raffrenato, E., Chase, L. E., Overton, T. R., Mills, J. K., & Foskolos, A. (2015). The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J Dairy Sci, 98(9), 6361-6380. https://doi.org/10.3168/jds.2015-9378

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 583-3597.

Winarti, E., Gunawan, Sofyan, A., Wirasti, C. A., Noviandi, C. T., Panjono, Agus, A., Harper, K. J., & Poppi, D. P. (2022). Improving live weight gain in Ongole crossbred bulls through processing of Gliricidia sepium leaf meal and cassava in a supplement concentrate. Animal Feed Science and Technology, 292, 115401. https://doi.org/https://doi.org/10.1016/j.anifeedsci.2022.115401

Winarti, E., Putridinanti, A. D., Noviandi, C. T., Andarwati, S., Agus, A., Harper, K. J., & Poppi, D. P. (2022). Utilising Gliricidia sepium leaf meal as a protein substitute in cassava-based supplements to increase average daily gain of Ongole bulls and income of smallholder farmers [Article]. Animal Production Science, 62(7), 676-681. https://doi.org/10.1071/AN21595

Published
2025-03-05
How to Cite
Cañaveral-Martínez, Ulises, Paulino Sánchez-Santillán, and Marcelino Gómez-Trinidad. 2025. “Degradation Kinetics and Ruminal Digestibility of Two Protein Sources Evaluated by in Vitro and in Situ Methods”. Archivos Latinoamericanos De Producción Animal 33 (1 in progr), 1-8. https://doi.org/10.53588/alpa.330102.
Section
Original paper