Interaction between tall fescue plants of different origin, free and infected with endophytic fungi
Abstract
Tall fescue grows in grasslands and is also cultivated in pastures. This grass species is often infected with a wild endophytic fungus that produces alkaloids toxic to livestock. A strategy to reduce the toxicity caused by the consumption of tall fescue infected with wild endophyte fungus in grazing livestock is the interseeding of infected pastures with legumes or endophyte-free grasses, or alternatively, using cultivars that have been inoculated with safe (non-toxic) endophytes. The aim of this study was to analyze, under cutting conditions, the vegetative and reproductive growth of naturalized tall fescue plants infected with wild endophyte (PE+) in the presence of: i) naturalized tall fescue plants free of endophyte (PE-); ii) an endophyte-free cultivar (TE-); and iii) a cultivar infected with a non-toxic endophyte AR584 (TE+). Two plants per pot were grown in field conditions with the following seven arrangements: monocultures PE+PE+, PE-PE-, TE-TE-, and TE+TE+, and the 1:1 mixtures PE+PE-; PE+TE+; PE+TE-. The experiment was conducted using a completely randomized design with eight replications. The accumulated aerial biomass production was calculated from four successive cuts each time two new fully expanded leaves were recorded on the main tiller of the plants. After the final cut, in three replications, the entire plant was harvested and separated into aerial biomass and roots. From the aerial biomass data, competition and aggressiveness indices were calculated. The remaining five replications were grown until they completed their reproductive cycle. The number of panicles per plant, the seeds produced, and reproductive effort were determined. Under the conditions of this study, the cultivar TE+ was more competitive than the naturalized plants with wild endophyte (PE+). Future work should continue to analyze the interactions between the cultivar TE+ and the PE+ population, addressing alkaloid production and environmental aspects of the region (e.g., droughts, flooding combined with defoliation).
Downloads
References
Ball, O.J.P.; Barker, G.M.; Prestidge, R.A. and Lauren, D.R. 1997. Distribution and accumulation of the alkaloid peramine in Neotyphodium lolii-infected perennial ryegrass. Journal of Chemical Ecology 23: 1419-1434. https://doi.org/10.1023/B:JOEC.0000006473.26175.19
Bastias, D.A., M.A. Martínez-Ghersa, C. L. Ballaré, and P.E. Gundel, P.E. 2017. Epichloë fungal endophytes and plant defenses: Not just alkaloids. Trends in Plant Science 22: 939-948. https://doi.org/10.1016/j.tplants.2017.08.005
Belanger, F.C. 1996. A rapid seedling screening method for determination of fungal endophyte viability. Crop Science 36: 460-462.
Bouton, J.H.; Latch, G.C.M.; Hill, N.S.; Hoveland, C.S.; McCann, M.A.; Watson, R.H.; Parish, J.A.; Hawkins, L.L. and Thompson, F.N. 2002. Reinfection of tall fescue cultivars with non-ergot alkaloid–producing endophytes. Agronomy Journal 94(3): 567–574. https://doi.org/10.2134/agronj2002.5670
Burkart, S.E.; Garbulsky, M.F.; Ghersa, C.M.; Guerschman, J.P.; León, R.J.C.; Oesterheld, M. and Perelman, S.B. 2005. Las comunidades potenciales del pastizal pampeano bonaerense. En: La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando J.C. León. Oesterheld, M.; Aguiar, M.R.; Ghersa, C.M.; Paruelo, J.M. (eds.). Editorial Facultad de Agronomía. Universidad de Buenos Aires. pp. 379-399.
Cheplick, G.P. 2007. Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environmental and Experimental Botany 60: 202–210. https://doi.org/10.1016/j.envexpbot.2006.10.001
Clay, K. and C. Schardl. 2002. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. American Naturalist 160: 99-127. https://doi.org/10.1086/342161
Cosgrove, G.P.; Anderson, C.B.; Phillot, M.; Nyfeler, D.; Hume, D.E.; Parson, A.J. and Lane, G.A. 2002. The effect of endophyte alkaloids on diet selection by sheep. Proceedings of the New Zealand Society of Animal Production 62:167–170.
De Battista, J.P. 2005. Neotyphodium research and application in South America. In: C. Roberts et al. (Eds.). Neotyphodium in Cool Season Grasses. Blackwell Publishing. Ames, Iowa, USA. pp. 63-69.
Decunta, F.A., L.I. Pérez, D. P. Malinowski, M.A. Molina-Montenegro and P.E. Gundel. 2021. A systematic review on the effects of Epichloë fungal endophytes on drought tolerance in cool-season grasses. Frontiers in Plant Science 12: 644731. https://doi:10.3389/fpls.2021.644731
di Menna, M.E. and Waller, J.E. 1986. Visual assessment of seasonal changes in amount of mycelium of Acremonium loliae in leaf sheaths of perennial ryegrass. New Zealand Journal of Agricultural Research 29: 111-116. https://doi.org/10.1080/00288233.1986.10417982
Doubi, B. T. S., K.I. Kouassi, K. L. Kouakou, K. K. Koffi, J. P. Baudoin and B.I.A Zoro. 2016. Existing competitive indices in the intercropping system of Manihot esculenta Crantz and Lagenaria siceraria (Molina) Standley, Journal of Plant Interactions 11: 178-185.
Easton, H.S. 2007. Grasses and Neotyphodium endophytes: co-adaptation and adaptive breeding. Euphytica 154: 295–306. https://doi.org/10.1007/s10681-006-9187-3
Edwards, G.R.; Lucas, R. J. and Johnson, M. R. 1993. Grazing preference for pasture species by sheep is affected by endophyte and nitrogen fertility. Proceedings of the New Zealand Grassland Association 55: 137–141. https://doi.org/10.33584/jnzg.1993.55.2074
Evans, T.J., D.J. Blodgett and G. E. Rottinghaus. 2012. Fescue toxicosis. En: Gupta, R.C. (Ed.) Veterinary toxicology. (pp. 1166-1180). Academic Press, San Diego, CA.
Gentos. s.f. Festuca TAITA. [Archivo PDF]. Recuperado el 10 de diciembre de 2019 de https://gentos.com.ar/productos/festuca-taita/
Gibson, D.J. and Newman, J.A. 2001. Biological floral of the British Isles: Festuca arundinacea Schreb. (F. elatior subsp. arundinacea (Schreb.) Hackel). Journal of Ecology 89: 304-324. https://www.jstor.org/stable/3072204
Gundel, P.E.; Garibaldi, L.A.; Tognetti, P.M.; Aragón, R.; Ghersa, C.M. and Omacini, M. 2009. Imperfect vertical transmission of the endophyte Neotyphodium in exotic grasses in grasslands of the Flooding Pampa. Microbial Ecology 57: 740-748. https://doi.org/10.1007/s00248-008-9447-y
Gundel, P. E.; Martínez‐Ghersa, M. A.; Omacini, M.; Cuyeu, R.; Pagano, E.; Ríos, R. and Ghersa, C. M. 2012. Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evolutionary Applications 5(8): 838-849. https://doi.org/10.1111%2Fj.1752-4571.2012.00261.x
Graff, P.; Gundel, P.E.; Salvat, A.; Cristos, D. and Chaneton, E.J. 2020. Protection offered by leaf fungal endophytes to an invasive species against native herbivores depends on soil nutrients. Journal of Ecology 108(4):1592-1604. https://doi.org/10.1111/1365-2745.13371
Hernández-Agramonte, I.M.; Semmartin, M.; Omacini, M.; Durante, M., Gundel, P.E. and De Battista, J. 2018. A fungal endophyte of a palatable grass affects preference of large herbivores. Austral Ecology 43: 172–179. https://doi.org/10.1111/aec.12554
Hopkins, A.A.; Young, C.A.; Panaccione, D.G.; Simpson, W.R.; Mittal, S. and Bouton, J.H. 2010. Agronomic performance and lamb health among several tall fescue novel endophyte combinations in the south-central USA. Crop Science 50:1552–1561. https://doi.org/10.2135/cropsci2009.08.0473
Krauss, J.; Härri, S. A.; Bush, L.; Husi, R.; Bigler, L.; Power, S. A. and Müller, C. B. 2007. Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Functional Ecology 21(1):107-116. https://doi.org/10.1111/j.1365-2435.2006.01216.x
Leuchtmann, A, C.W. Bacon, C.L. Schardl, J.F. Jr. White and M. Tadych. 2014. Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycology 106: 202–215.
Lugtenberg, B.J.J., J.R. Caradus, and L.J. Johnson. 2016. Fungal endophytes for sustainable crop production. Microbiology Ecology 92:1-17. https://doi.org/10.3389/fpls.2015.00267
Mazzanti, A.; Castaño J.; Sevilla, C. and Orbea, J. 1992. Características agronómicas de especies y cultivares de gramíneas y leguminosas forrajeras adaptadas al sudeste de la Provincia de Buenos Aires. INTA. CRABAS. EEA Balcarce. 73 p.
Palacios, N. S.; Affinito, M. A.; Varea, I. and Andres, A. N. 2023. Variabilidad en caracteres de producción de semilla de poblaciones de festuca alta. Revista Argentina de Producción Animal 47, Supl. 1: 78.
Petigrosso, L.R.; Martínez Verneri, J. and Fernández, O.N. 2021. Habilidad competitiva de plantas de festuca alta libres e infectadas con endófito bajo cosecha. Archivos Latinoamericanos de Producción Animal 29(1-2): 37-45. https://doi.org/10.53588/alpa.291205
Petigrosso, L.R.; Navarro, D.; Assuero, S.G.; Vignolio, O.R.; Castaño, J.A. and Colabelli, M.N. 2020b. Respuesta a la frecuencia de defoliación de plantas de festuca alta de una población naturalizada infectada con endófito silvestre y un cultivar comercial libre. Revista de Investigaciones Agropecuarias. 46(2), 195-202.
Petigrosso, L. R.; García, M.; Vignolio, O.R.; Salvat, A.; Cristos, D. and Castaño, J. 2020a. Plant interaction and ergovaline concentration in mixture of Lotus tenuis and infected Schedonorus arundinaceus. Ecología Austral 30:165-174. https://doi.org/10.25260/EA.20.30.1.0.944
Petigrosso, L.R. P.E. Gundel, M.N. Colabelli, O.N. Fernández, and S.G. Assuero. 2019. Hongos endófitos en festuca alta: del problema a las soluciones. Revista de Investigación Agropecuaria 45: 292-303.
Petigrosso, L.R., M.N. Colabelli, O.N. Fernández, V. Ispizúa, and M.G. Cendoya. 2013. Incidence of the endophyte fungus Neotyphodium coenophialum in pastures of tall fescue differing in age and soil characteristics. African Journal of Agricultural Research 8: 2655-2662.
R Core Team. 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org
Richardson, D.M. and P. Pysek. 2006. Plant invasions: merging the concepts of species invasiveness and community invisibility. Progress in Physical Geography 30: 409–431. https://doi.org/10.1191/0309133306pp490pr
Roitman, G. and P. Preliasco. 2018. Guía de reconocimiento de herbáceas de la Pampa Deprimida. Buenas prácticas para una ganadería sustentable de pastizaL. Características para su manejo. Disponible en: https://www.avesargentinas.org.ar/sites/default/files/kit_pampas__guia__de_reconocimiento_de_herbaceas_de_la_pampa_deprimida_segunda_edicion.pdf. Ultimo acceso: marzo de 2021.
Saha, C.D.; Jackson, M.A. and Johnson-Cicalese, J.M. 1988. A rapid staining method for detection of endophytic fungi in turf and forage grass. Phytopathology 78: 237-239.
Scheneiter, J.O., I.I.; Kaufmann, A.R. Ferreyra, and R.T. Llorente. 2016. The herbage productivity of tall fescue in the Pampas region of Argentina is correlated to its ecological niche. Grass and Forage Science 71: 403-412. https://doi.org/10.1111/gfs.12184
Sultan, S. E. 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5(12): 537-542. https://doi:10.1016/s1360-1385(00)01797-0
Vega, D.J.; di Santo, H.E.; Ferreira, V.A.; Castillo, E.A.; Bonamico, N.C. and Grassi, E.M. 2021. Evaluación fenotípica de poblaciones de Festuca arundinacea Schreber naturalizadas en ambientes subhúmedos semiáridos. Ciencia y Tecnología Agropecuaria, 22(2).
Weigelt, A. and P. Jolliffe. 2003. Indices of plant competition. Journal of Ecology 91: 707–720.
Young, C. A.; Hume, D. E. and Mcculley, R.L. 2013. Forages and pastures symposium: fungal endophytes of tall fescue and perennial ryegrass: pasture friend or foe? Journal of Animal Science 91(5): 2379-2394. https://doi.org/10.2527/jas.2012-5951
Copyright (c) 2025 Lucas Ricardo Petigrosso, Hipolito Arata, María Alejandra Marino, Osvaldo R. Vignolio

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.