Energy-Protein Synchronization in Cattle: Smart Feeding

Keywords: Rumen fermentation, nutrient efficiency, microbial protein synthesis

Abstract

The synchronization of energy and protein in cattle nutrition aims to optimize resource utilization to maximize production without compromising animal welfare. This approach adjusts the diet according to the specific needs of ruminants, adapting the ration through nutritional monitoring. Ruminants, due to their morphology, convert fibrous feeds and low-quality proteins into essential nutrients such as microbial protein and volatile fatty acids, which are crucial for growth and milk production. Synchronization ensures that energy and nitrogen are simultaneously available in the rumen, enhancing fermentation and microbial protein synthesis. The carbohydrate source, such as cereals and fibers, influences energy release and fermentation stability. Likewise, protein sources, such as urea or soybean meal, must be balanced to minimize nitrogen wastage and improve feed efficiency. A well-balanced diet that synchronizes energy and protein availability supports milk production, cattle health, and promotes sustainability in rotational grazing systems.

Downloads

Download data is not yet available.

References

Aguilar, A.D., 1998. Sincronía de nutrientes: la alimentación del futuro. Mundo Ganadero. 53.https://www.mapa.gob.es/ministerio/pags/biblioteca/revistas/pdf_MG/MG_1998_106_52_57.pdf
Cueva, S.F., Harper, M., Roth, G.W., Wells, H., Canale, C., Gallo, A., Masoero, F., Hristov, A.N., 2023. Effects of ensiling time on corn silage starch ruminal degradability evaluated in situ or in vitro. Journal of Dairy Science. 106(6): 3961-3974. https://doi.org/10.3168/jds.2022-22817
De Lana Ferreira, M.F., Rennó, L.N., Detmann, E., Paulino, M.F., de Campos Valadares Filho, S., Moreira, S.S., Martins, H.C., de Oliveira, B.I.C., Marquez, J.A., de Paula Cidrine, I., 2020. Performance, metabolic and hormonal responses of grazing Nellore cows to an energy-protein supplementation during the pre-partum phase. BMC Veterinary Research. 16, 1-13. https://doi.org/10.1186/s12917-020-02309-3
FEDNA, Fundación Española para el desarrollo de la nutrición animal., 2013. Necesidades nutricionales para ganado porcino. 2nd ed. Madrid: FEDNA. https://fundacionfedna.org
Garry, B., McGovern, F.M., Boland, T.M., Rinne, M., Kuoppala, K., Baumont, R., Lewis, E., O'Donovan, M., 2021. How does herbage mass effect voluntary dry matter intake and in vivo organic matter digestibility in sheep and the in vitro gas production of perennial ryegrass?. Livestock Science. 244, 104345. https://doi.org/10.1016/j.livsci.2020.104345
Gilbery, T.C., Lardy, G.P., Hagberg, D.S., and Bauer, M.L., 2010. Effect of flax grain inclusion on rumen fermentation, digestion, and microbial protein synthesis in growing and finishing diets for beef cattle. Animal Feed Science and Technology. 161(1-2): 1-8. https://doi.org/10.1016/j.anifeedsci.2010.06.008
Han, C.S., Kaur, U., Bai, H., Dos Reis, B.R., White, R., Nawrocki, R.A., Voyles, R.M., Kang, M.G., Priya, S., 2022. Invited review: Sensor technologies for real-time monitoring of the rumen environment. Journal of Dairy Science. 105(8): 6379-6404. https://doi.org/10.3168/jds.2021-20576
Hao, X.Y., Yu, S.C., Mu, C.T., Wu, X.D., Zhang, C.X., Zhao, J.X., and Zhang, J.X., 2020. Replacing soybean meal with flax seed meal: Effects on nutrient digestibility, rumen microbial protein synthesis and growth performance in sheep. Animal. 14(9): 1841-1848. https://doi.org/10.1017/S1751731120000397
Haro, A.N., Andrade Rojas, M.J., and Suarez, A., 2022. Evidence-Based Ruminal Microbiota. Alimentos Ciencia e Ingeniería. 29(2): 21–30. https://doi.org/10.31243/aci.v29i2.1839
Haro, A.N., Saldaña, D.R., Aucay, A.S.J., Rojas, A.V., and Saavedra, M.A.P., 2024. Análisis de la composición química y fermentación ruminal in vitro de alimentos fibrosos en ganado ovino. RECIENA. 4(1): 115-120. https://doi.org/10.47187/ksyxnw16
Karsli, M., and Russell, J.R., 2001. Effects of some dietary factors on ruminal microbial protein synthesis. Turkish Journal of Veterinary and Animal Sciences. 25(5): 681-686. https://journals.tubitak.gov.tr/veterinary/vol25/iss5/7
Kim, K.H., Oh, Y.G., Choung, J.J., Chamberlain, D.G., 1999. Effects of varying degrees of synchrony of energy and nitrogen release in the rumen on the synthesis of microbial protein in cattle consuming grass silage. Journal of the Science of Food and Agriculture. 79(6): 833-838. https://doi.org/10.1002/(SICI)1097-0010(19990501)79:6<833::AID-JSFA293>3.0.CO;2-C
Mahboobi, Z., Karimi, N., Jahanbakhshi, A., 2023. Estimation of microbial protein synthesis in the rumen of growing lambs based on the purine derivative excretions and the dietary forage-to-concentrate ratio. Journal of Advanced Veterinary and Animal Research. 10(3): 385. https://doi.org/10.5455/javar.2023.j691
Monteiro, H.F., Faciola, A.P., 2020. Ruminal acidosis, bacterial changes, and lipopolysaccharides. Journal of Animal Science. 98(8): skaa248. https://doi.org/10.1093/jas/skaa248
Moore, K.J., Lenssen, A.W., Fales, S.L., 2020. Factors affecting forage quality. Forages: The Science of Grassland Agriculture. 2: 701-717. https://doi.org/10.1002/9781119436669.ch39
NRC, National Academies of Sciences, Division on Earth, Life Studies, and Committee on Nutrient Requirements of Dairy Cattle., 2021. Nutrient requirements of dairy cattle.
Poppi, D.P., McLennan, S.R., 1995. Protein and energy utilization by ruminants at pasture. Journal of Animal Science. 73(1): 278-290. https://doi.org/10.2527/1995.731278x
Reynolds, C.K., Kristensen, N.B., 2008. Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis. Journal of Animal Science. 86(14): E293-E305. https://doi.org/10.2527/jas.2007-0475
Rauch, R., Nichols, K., Daniel, J.B., Martín-Tereso, J., Dijkstra, J., 2023. Dietary protein oscillation: effects on digestibility, nutrient balance and estimated microbial protein synthesis in lactating dairy cows. Animal. 17(1): 100695. https://doi.org/10.1016/j.animal.2022.100695
Roche, J.R., Berry, D.P., Bryant, A.M., Burke, C.R., Butler, S.T., Dillon, P.G., Donaghy, D.J., Horan, B., Macdonald, K.A., Macmillan, K.L., 2017. A 100-year review: A century of change in temperate grazing dairy systems. Journal of Dairy Science. 100(12): 10189-10233. https://doi.org/10.3168/jds.2017-13182
Sundrum, A., 2015. Metabolic disorders in the transition period indicate that the dairy cows’ ability to adapt is overstressed. Animals. 5(4): 978-1020. https://doi.org/10.3390/ani5040395
Tedeschi, L.O., Greenwood, P.L., Halachmi, I., 2021. Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming. Journal of Animal Science. 99(2): skab038. https://doi.org/10.1093/jas/skab038
Van Soest, P.J., Sniffen, C.J., Allen, M.S., 1988. Rumen dynamics. In Aspects of digestive physiology in ruminants (pp. 43-73). Cornell Univ. Press, New York. https://doi.org/10.7591/9781501745713-004
Van Soest, P.J., 1994. Nutritional ecology of the ruminant (Vol. 476). Cornell University Press.
Zhang, N., Teng, Z., Li, P., Fu, T., Lian, H., Wang, L., Gao, T., 2021. Oscillating dietary crude protein concentrations increase N retention of calves by affecting urea-N recycling and nitrogen metabolism of rumen bacteria and epithelium. PloS One, 16(9): e0257417. https://doi.org/10.1371/journal.pone.0257417
Published
2024-10-13
How to Cite
Haro, Andres. 2024. “Energy-Protein Synchronization in Cattle: Smart Feeding”. Archivos Latinoamericanos De Producción Animal 32 (Supl 1), 1-8. https://doi.org/10.53588/alpa.320501.