Evaluation of the effect of Cymbopogon citratus on consumption, digestibility, methane emission and energy partition in growing cattle

  • María Fernanda Vázquez Carrillo FMVZ UAEMex https://orcid.org/0000-0002-8058-0580
  • Reynaldo Zaragoza-Guerrero Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México
  • Luis Corona-Gochi Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México https://orcid.org/0000-0002-6640-7626
  • Manuel González-Ronquillo Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México
  • Epigmenio Castillo-Gallegos Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México
  • Octavio Alonso Castelán-Ortega Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México https://orcid.org/0000-0003-4693-9673
Keywords: lemongrass, beef cattle, methane, mitigation, energy partition

Abstract

Methane (CH4) produced by enteric fermentation in cattle is of utmost importance as it contributes to greenhouse gas emissions. This gas is a product of the fermentation that feed undergoes in the rumen, resulting in an energy loss for the animal. So, reducing CH4 production would lead to a more efficient use of the gross energy ingested, which could be used to transform it into meat or milk and would also reduce CH4 emissions into the environment. There are several CH4 mitigation strategies, such as the addition of plants with a high concentration of secondary metabolites, like Cymbopogon citratus (CC). Therefore, the present study aimed to evaluate increasing levels of CC on dry matter intake (DM), nutrient digestibility (DIG), CH4 production and partition of gross energy intake in growing cattle fed a high forage diet (68.6% forage: 31.4% concentrate). Four heifers (¾ Holstein × ¼ Charolais) with an average initial live weight of 225 ± 64 kg distributed in a 4×4 Latin square design was used. The experimental treatments were: 1) control diet (CO); 2) CO + 30 g CC DM/d; 3) CO + 60 g CC DM/d and 4) CO + 90 g CC DM/d. A 22.4 % and 21.2 % reduction in CH4 yield (CH4 g/kg DMI) and Ym factor respectively was observed with the 30 CC treatment compared to CO (P ≤ 0.05). No statistically significant differences were observed for means related with DMI, DIG and partition of gross energy intake (P > 0.05). It is concluded that supplementation with 30 g CC DM/d reduces CH4 yield without affecting animal performance.

Downloads

Download data is not yet available.

References

AFRC. Energy and Protein Requirements of Ruminants. An Advisory Manual Prepared by the Agricultural Food and Research Council Technical Committee on Responses to Nutrients. CAB International: UK, 1993; 176.
Brouwer E. Report of sub-committee on constants and factors. In: Energy metabolism of farm animals. Proceedings of the 3rd Symposium on Energy Metabolism, Blaxter K.L., Ed. Academic Press: London, 1965, 441-443.
Castelán-Ortega, O. A., J. C. Ku-Vera, J. C. Ángeles-Hernández, M. Benaouda, G. S. Hernández-Pineda, T. L. Molina, L. Ramírez-Cancino, S.V. Castelán-Jaime, A. R. Praga-Ayala, F. Lazos-Balbuena, H. Montelongo-Pérez, M. González-Ron¬quillo, M. F. Vázquez-Carrillo, E. Cardoso-Gutiérrez, E. Aran¬da-Aguirre, D. Villegas-Estrada, A. P. Guadarrama-López y G. Apodaca-Martínez. 2019. Ganadería. Capítulo 22. pp. 492- 528. En: Paz-Pellat, F., J. M. Hernández-Ayón, R. Sosa-Ávalos y A. S. Velázquez-Rodríguez (eds.). 2019. Estado del Ciclo del Carbono en México: Agenda Azul y Verde. Programa Mexica¬no del Carbono. Texcoco, Estado de México, México. ISBN: 978-607-96490-7-4.
Eckard RJ, Grainger C, De Klein CAM. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest Sci 2010; 130:47-56. DOI: 10.1016/j.livsci.2010.02.010.
Frutos P.; Hervás G.; Giráldez F.J.; Mantecón A.R. Review. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191-202. DOI:10.5424/sjar/2004022-73
Guyader J.; Eugène M.; Nozière P.; Morgavi D.P.; Doreau M.; Martin C. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach. Animal 2014, 8, 1816-1825; DOI: 10.1017/S1751731114001852.
Haque A.N.M.A.; Remadevi R.; Naebe M. Lemongrass (Cymbopogon): a review on its structure, properties, applications and recent developments. Cellulose 2018, 25, 5455–5477; DOI: 10.1007/s10570-018-1965-2
IPCC. Dong H.; Joe Mangino J.; McAllister A.T.; Hatfield L.J.; Johnson E.D.; Lassey R.K.; de Lima A.M. Romanovskaya A. Chapter 10: Emissions from Livestock and Manure Management. In: IPCC Guidelines for National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T., Tanabe K. Eds.; IGES, Japan. 2006; 4, 10.1-10.87
Johnson K.A.; Johnson D.E. Methane emission from cattle. J Anim Sci 1995, 73, 2483-2492; DOI: 10.2527/1995.7382483x
Ku-Vera J.C.; Jiménez-Ocampo R.; Valencia-Salazar S.S.; Montoya-Flores M.D.; Molina-Botero I.C.; Arango J.; Gómez-Bravo C.A.; Aguilar-Pérez C.F.; Solorio-Sánchez F.J. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front. Vet. Sci. 2020, 7, 584; DOI: 10.3389/fvets.2020.00584
Makkar H.P.S.; Blümmel M.; Borowy N.K.; Becker K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 1993, 61, 161–165; DOI: 10.1002/jsfa.2740610205
Naumann H.D.; Tedeschi L.O.; Zeller W.E.; Huntley N.F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. Zootec. 2017, 46, 929–949; DOI:10.1590/s1806-2902017001200009.
Price, M.L.; Van Scoyoc, S.; Butler, L.G. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agr. Food Chem. 1978, 26, 1214–1218; DOI: 10.1021/jf60219a031
Smith P.; Bustamante M.; Ahammad H.; Clark H.; Dong H. Agriculture, forestry and other land use (AFOLU). In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Edenhofer O.; Pichs-Madruga R.; Sokona Y.; Minx J.C.; Farahani E.; Kadner S.; Seyboth K., et al. Eds.; Cambridge University Press: United Kingdom and New York, NY, USA, 2014; pp 811-922.
Street C.J.; Butcher E.J.; Harris E.L. Estimating Urine Energy from Urine Nitrogen, J. Anim. Sci. 1964, 23, 1039-1041; DOI: 10.2527/jas1964.2341039x
van Lingen H.J.; Niu M.; Kebreab E.; Valadares F.S.C.; Rooke J.A.; Duthie C.-A.; Schwarm A.; Kreuzer M.; Hynd P.I.; Caetano M.; Eugène M.; Martin C.; McGee M.; O’Kiely P.; Hünerberg M.; McAllister A.T.; Berchielli T.T.; D.Messana J.; Peiren N.; Chaves V.A.; Charmley E.; cole A.N.; Hales E.K.; Lee S-S.; Berndt A.; Reynolds C.K.; Crompton A.L.; Bayat R-A.; Yáñez-Ruiz R.D.; Yu Z.; Bannink A.; Dijkstra J.; Casper P.D.; Hristov N.A. Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database. Agric. Ecosyst. Environ. 2019, 283, 106575; DOI: 10.1016/j.agee.2019.106575
Van Soest P.J.; Robertson J.B.; Lewis B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597; DOI: 10.3168/jds.S0022-0302(91)78551-2
Vázquez-Carrillo M.F.; Montelongo-Pérez H.D.; González-Ronquillo M.; Castillo-Gallegos E.; Castelán-Ortega O.A. Effects of Three Herbs on Methane Emissions from Beef Cattle. Animals 2020, 10, 1671; DOI: 10.3390/ani10091671
Zhang X.M.; Smith L.M.; Gruninger J.R.; Kung L.; Vyas D.; McGinn M.S.; Kindermann M., Liang T.Z.; Beauchemin K. Combined effects of 3-nitrooxypropanol and canola oil supplementation on methane emissions, rumen fermentation and biohydrogenation, and total tract digestibility in beef cattle, J. Anim. Sci. 2021, 99, 1-10; DOI: 10.1093/jas/skab081
Published
2023-06-15
How to Cite
Vázquez Carrillo, María Fernanda, Reynaldo Zaragoza-Guerrero, Luis Corona-Gochi, Manuel González-Ronquillo, Epigmenio Castillo-Gallegos, and Octavio Alonso Castelán-Ortega. 2023. “Evaluation of the Effect of Cymbopogon Citratus on Consumption, Digestibility, Methane Emission and Energy Partition in Growing Cattle”. Archivos Latinoamericanos De Producción Animal 31 (Suplemento), 207-12. https://doi.org/10.53588/alpa.310537.