Effect of additives in the chemical composition of broad bean silages (Vicia faba)

Keywords: forage legumes, Whole broad bean plant silage, lactic acid bacteria, formic acid, molasses.

Abstract

Legumes have low ensilability due to their high buffering capacity and low content of soluble carbohydrates. However, the broad bean (Vicia faba) can be an alternative forage for ruminant feeding, having the advantage of its low buffer capacity, high protein content and high digestibility. The inclusion of additives to silage is intended to improve the quality of fermentation, provide aerobic stability, and increase the nutritional value of silage. The objective was to evaluate the effect of different additives on the quality of broad bean forage silage. Broad bean forage was harvested 116 days after sowing, and the following treatments were evaluated in laboratory silos: 1) Inoculum of homofermentative lactic bacteria Enterococcus faecium, Pediococcus pentosaceus and Lactobacillus plantarum (INOC), 2) Formic acid at 85 % concentration (FORM), 3) Cane molasses applied at 4% fresh weight (MEL), as well as 4) Control treatment without additives (CON). A completely randomized experimental design with five laboratory silos per treatment was used. Chemical analyzes were performed for dry matter, organic matter, crude protein, neutral detergent fiber, acid detergent fiber, ethereal extract, pH, starch content, in vitro digestibility of dry matter, estimated metabolizable energy content, and proportion of effluents produced. The inclusion of additives did not modify the chemical composition of the broad bean silage (P>0.05). Given the low initial dry matter content in the broad bean forage, the effluent represented more than 18% of the ensiled forage. Broad bean silage has a good crude protein content and an average value of metabolizable energy. However, the large proportion of effluents can be an environmental problem. The evaluated additives did not improve the chemical composition of broad bean silages, nor the loss of dry matter, or the production of effluents.

Downloads

Download data is not yet available.

References

Agung, S., and G.K. McDonald. 1998. Effects of seed size and maturity on the growth and yield of faba bean (Vicia faba L.). Australian Journal of Agricultural Research, 49: 79-88. 10.1071/A97030
Alkhtib, A. S., J. A. Wamatu, T. Wegi, and B.A. Rischkowsky. 2016. Variation in the straw traits of morphological fractions of faba bean (Vicia faba L.) and implications for selecting for food-feed varieties. Animal Feed Science and Technology, 222: 122–131. 10.1016/j.anifeedsci.2016.10.006
Ankom Technologies. 2005a. Procedures (for NDF, ADF, and in vitro digestibility). Ankom Technology method. http://www.ankom.com. Accessed 20 March 2022.
Ankom Technologies. 2005b. Procedures (In vitro true digestibility using the DAISY II Incubator). Ankom Technology Method. http://www.ankom.com. Accessed 20 March 2022.
AOAC, Association of Official Analytical Chemistry. 1990. Official methods of analysis. 15th ed. AOAC International, Arlington, VA.
Auldist, M. J., L.C. Marett, J.S. Greenwood, M. Hannah, J.L. Jacobs, and W.J. Wales. 2013. Effects of different strategies for feeding supplements on milk production responses in cows grazing a restricted pasture allowance. Journal of Dairy Science, 96(2): 1218–1231. 10.3168/jds.2012-6079
Baizán, S., F. Vicente, N. Barhoumi, I. Feito, L. Rodríguez, and A. Martínez-Fernández. 2018. Efecto de la inclusión de ensilado de haba forrajera en la dieta de vacuno lechero sobre la ingestión voluntaria y la producción y composición de la leche. AIDA, 114: 353-367.
Baizán, S., F. Vicente, M.A. González, C. González-García, B. de la Roza-Delgado, A. Soldado-Cabezuelo, and A. Martínez-Fernández. 2015. Alternativas forrajeras sostenibles como cultivo invernal en zonas templadas. Pastos, 45: 23-32.
Belete, S., M. Bezabih, B. Abdulkadir, A. Tolera, K. Mekonnen, and E. Wolde-meskel. 2019. Inoculation and phosphorus fertilizer improve food-feed traits of grain legumes in mixed crop-livestock systems of Ethiopia, Agriculture. Ecosystems & Environment, 279: 58-64. 10.1016/j.agee.2019.04.014
Borreani, G., A. Revello, S. Colombini, R. Odoardi, and M. Paoletti, and E. Tabacco. 2009. Fermentative profiles of field pea (Pisum sativum), faba bean (Vicia faba) and white lupin (Lupinus albus) silages as affected by wilting and inoculation. Animal Feed Science and Technology, 151: 316-323. 10.1016/j.anifeedsci.2009.01.020
Castro-Montoya, J.M. and U. Dickhoefer. 2020. The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review. Animal Feed Science and Technology, 269: 114641. 10.1016/j.anifeedsci.2020.114641
Cherif, C., F. Hassanat, S. Claveau, J. Girard, R. Gervais, and C. Benchaar. 2018. Faba bean (Vicia faba) inclusion in dairy cow diets: Effect on nutrient digestion, rumen fermentation, nitrogen utilization, methane production, and milk performance. Journal of Dairy Science, 101: 8916-8928. 10.3168/jds.2018-14890
CONAGUA, Comisión Nacional del Agua. 2021. Estadísticas Agrícolas de los Distritos de Riego Año Agrícola. https://www.gob.mx/conagua/documentos/estadisticas-agricolas-de-los-distritos-de-riego. Accessed 15 Jan 2022.
Dewhurst, R. 2013. Milk production from silage: comparison of grass, legume and maize silages and their mixtures. Agricultural and Food Science, 22: 57–69. 10.23986/afsci.6673
Dong, Z., J. Zhao, S. Chen, Y. Bao, X. Tao, S. Wang, L. Junfeng, L. Quinhua, and T. Shao. 2020. Effects of different additives on fermentation quality and aerobic stability of a total mixed ration prepared with local feed resources on Tibetan plateau. Animal Science Journal, 91(1): 2-11. 10.1111/asj.13482
Eisler, M.C., M.R.F. Lee, J.F. Tarlton, G.B. Martin, J. Beddington, J.A.J. Dungait, H. Greathead, J. Liu, S. Mathew, H. Miller, T. Misselbrook, P. Murray, V.K. Vinod, R. Van Saun, and M. Winter. 2014. Agriculture: steps to sustainable livestock. Nature, 507: 32–34. 10.1038/507032a
Elshereef, A. A. Arroyave-Jaramillo, J. Zavala-Escalante, L. M. Piñeiro-Vázquez, A. T. Aguilar-Pérez, C. F. Solorio-Sánchez, F. J. and J.C. Ku-Vera. 2020. Enteric methane emissions in crossbred heifers fed a basal ration of low-quality tropical grass supplemented with different nitrogen sources. Czech Journal of Animal Science, 650 (4): 135–144. 10.17221/256/2019-cjas
FAO, Food and Agriculture Organization of the United Nations. 2016. Legumbres: semillas nutritivas para un future sostenibles. FAO, Chile.
Ferraretto, L.F., P.M. Crump, and R.D. Shaver. 2015. Effect of ensiling time and exogenous protease addition to whole-plant corn silage of various hybrids, maturities, and chop lengths on nitrogen fractions and ruminal in vitro starch digestibility. Journal of Dairy Science, 98: 8869-8881. 10.3168/jds.2015-9511
Franke, A.C., G.J. van den Brand, B. Vanlauwe, and K.E. Giller. 2018. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review. Agriculture, Ecosystems & Environment, 261: 172-185. 10.1016/j.agee.2017.09.029
Gallo, A., G. Giuberti, A.S. Atzori, and F. Masoero. 2018. Short communication: In vitro rumen gas production and starch degradation of starch-based feeds depend on mean particle size. Journal of Dairy Science, 101: 6142-6149. 10.3168/jds.2017-13944
Holguín, V., A. Vilma, M. Cuchillo-Hilario, J. Mazabel, S. Quintero, and J. Mora-Delgado. 2020. Efecto de la mezcla ensilada de Pennisetum purpureum y Tithonia diversifolia sobre la fermentación ruminal in vitro y su emisión de metano en el sistema RUSITEC. Revista Mexicana de Ciencias Pecuarias, 11: 19-37. 10.22319/rmcp.v11i1.4740
Huisden, C.M., A.T. Adesogan, S.C. Kim, and T. Ososanya. 2009. Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage. Journal of Dairy Science, 92: 690-697. 10.3168/jds.2008-1546
Jiménez-Calderón, J. D., A. Martínez-Fernández, A. Soldado, A. González, and F. Vicente. 2020. Faba bean-rapeseed silage as substitute for Italian ryegrass silage: effects on performance and milk quality of grazing dairy cows. Animal Production Science, 60(7): 913. 10.1071/an17905
Jobim, C.C., L.G. Nussio, R.A. Reis, and P. Schmidt. 2007. Avanços metodológicos na avaliação da qualidade da forragem conservada. Revista Brasileira de Zootecnia, 36: 101-119. 10.1590/S1516-35982007001000013
Johnston, D.J., K. Theodoridou, A.W. Gordon, T. Yan, W.C. McRoberts, and C.P. Ferris. 2019. Field bean inclusion in the diet of early-lactation dairy cows: Effects on performance and nutrient utilization. Journal of Dairy Science, 102: 10887-10902. 10.3168/jds.2019-16513
Junges, D., G. Morais, M.H.F. Spoto, P.S. Santos, A.T. Adesogan, L.G. Nussio, and J.L.P. Daniel. 2017. Short communication: Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. Journal of Dairy Science, 100: 9048-9051. 10.3168/jds.2017-12943
Kung, L., R.D. Shaver, R.J. Grant, and R.J. Schmidt. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101: 4020-4033. 10.3168/jds.2017-13909
Martin, N.P., M.P. Russelle, J.M. Powell, C.J. Sniffen, S.I. Smith, J.M. Tricarico, and R.J. Grant. 2017. Invited review: Sustainable forage and grain crop production for the US dairy industry. Journal of Dairy Science, 100: 9479-9494. 10.3168/jds.2017-13080
Mogodiniyai Kasmaei, K., B.O. Rustas, R. Spörndly, and P. Udén. 2013. Prediction models of silage fermentation products on crop composition under strict anaerobic conditions: A meta-analysis. Journal of Dairy Science, 96: 6644-6649. 10.3168/jds.2013-6858.
Nalle, C. L., V. Ravindran, and G. Ravindran. 2010. Nutritional value of faba beans (Vicia faba L.) for broilers: Apparent metabolisable energy, ileal amino acid digestibility and production performance. Animal Feed Science and Technology, 156(3-4): 104–111. 10.1016/j.anifeedsci.2010.01.010
Niderkorn, V., G, Copani, and C. Martin. 2019. Effects of including bioactive legumes in grass silage on digestion parameters, nitrogen balance and methane emissions in sheep. Grass and Forage Science, 74: 626– 635. 10.1111/gfs.12454
Nieto-Sierra, D.F., E. Lagos-Burbano, Y. Avellaneda-Avellaneda, and E. Castro-Rincón. 2020. Productivity of dairy cows supplemented with silage of fava bean fodder beet. Agronomía Mesoamericana, 31(2): 341-351. 10.15517/am.v31i2.37806
Przemyslaw, S., P. Cezary, M. Stanisław, L. Krzysztof, P. Barbara, A. Zofia, F. Maja, Z. Katarzyna, and K. Ząbek. 2015. The effect of nutritional and fermentational characteristics of grass and legume silages on feed intake, growth performance and blood indices of lambs. Small Ruminant Research, 123(1): 1–7. 10.1016/j.smallrumres.2014.11.008
Queiroz, O.C., K.G. Arriola, J.L. Daniel, and A.T. Adesogan. 2013. Effects of 8 chemical and bacterial additives on the quality of corn silage. Journal of Dairy Science, 96:5836-43 10.3168/jds.2013-6691
Rinne, M., M.M. Leppä, K. Kuoppala, E. Koivunen, M. Kahala, T. Jalava, J.P. Salminen, K. Manni. 2020. Fermentation quality of ensiled crimped faba beans using different additives with special attention to changes in bioactive compounds. Animal Feed Science and Technology, 265:114497. 10.1016/j.anifeedsci.2020.114497
Rojas-Tiempo, J., R. Díaz-Ruiz, F. Álvarez-Gaxiola, J. Ocampo-Mendoza, and A. Escalante-Estrada. 2012. Tecnología de producción de haba y características socioeconómicas de productores en Puebla y Tlaxcala. Revista Mexicana de Ciencias Agrícolas, 3: 35-49.
Sainz-Ramírez, A., A. Botana, S. Pereira-Crespo, L. González-González, M. Veiga, C. Resch, J. Valladares, C.M. Arriaga-Jordán, and G. Flores-Calvete. 2020. Effect of the cutting date and the use of additives on the chemical composition and fermentative quality of sunflower silage. Revista Mexicana de Ciencias Pecuarias, 11: 620-637. https://doi.org/10.22319/rmcp.v11i3.5092
Santos, M.C. and L. Jr. Kung. 2016. Short communication: The effects of dry matter and length of storage on the composition and nutritive value of alfalfa silage. Journal Dairy Science, 99(7):5466-5469. 0.3168/jds.2016-10866
SIAP, Servicio de Información Agroalimentario y Pesquero, con información de las Delegaciones de la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). 2020. Informe Nacional: Producción anual de leche y producción agrícola. http://infosiap.siap.gob.mx/anpecuario_siapx_gobmx/GanadoOtrosMpio.do Access date 20 november 2022.
Tilley, J.M. and R.A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Science, 18:104-111.
Van Soest, P., J.B. Robertson, and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. International Journal of Dairy Science, 74: 3583-3597. 10.3168/jds.S0022-0302(91)78551-2
Vilariño, M., J.P. Métayer, K. Crépon, and G. Duc. 2009. Effects of varying vicine, convicine and tannin contents of faba bean seeds (Vicia faba L.) on nutritional values for broiler chicken. Animal Feed Science and Technology, 150(1-2): 114–121. 10.1016/j.anifeedsci.2008.08.001
Zdunczyk, Z., D. Mikulski, J. Jankowski, B. Przybylska-Gornowicz, E. Sosnowska, J. Juskiewicz, R. Amarowicz, and B.A. Slominski. 2018. Effects of dietary inclusion of high- and low-tannin faba bean (Vicia faba L.) seeds on microbiota, histology and fermentation processes of the gastrointestinal tract in finisher turkeys. Animal Feed Science and Technology, 240: 184–196. 10.1016/j.anifeedsci.2018.04.006
Published
2023-06-15
How to Cite
Sainz Ramírez, Aurora, Julieta Gertrudis Estrada-Flores, José Velarde-Guillén, Felipe López-González, and Carlos Manuel Arriaga-Jordán. 2023. “Effect of Additives in the Chemical Composition of Broad Bean Silages (Vicia Faba)”. Archivos Latinoamericanos De Producción Animal 31 (Suplemento), 249-56. https://doi.org/10.53588/alpa.310543.