Omic molecular thecnologies applied to the study of heat stress in cattle
Abstract
The ability to tolerate extreme heat has been proposed as an important selection criterion to promote the breeding of thermo-tolerant animals, especially in climates characterized by environmental heat stress during most of the year. Novel genomic technologies are available to study genetic bases supporting the thermo-tolerance in cattle, among which are: Genome-wide association studies, validation of markers and candidate genes, RNA sequencing and transcriptome analysis. These technologies currently allow faster progress in the identification of thermotolerant cattle, which is highly relevant from the perspective of the current problems as global warming and food security. So, the objective of this review is to analyze the current status of the use of omics technologies in animal production studies under heat stress.
Downloads
References
Haire, A., Bai, J., Zhao, X., Song, Y., Zhao, G., Dilixiati, A., Li, J., Sun, W.Q., Wan, P., Fu, X., Wusiman, A., 2022. Identifying the heat resistant genes by multi-tissue transcriptome sequencing analysis in Turpan Black sheep, Theriogenology, 179, 78-86. doi: 10.1016/j.theriogenology.2021.11.008.
Henry, B., Eckard, R., Beauchemin, K., 2018. Adaptation of ruminant livestock production systems to climate changes. Animal. 12, s445–s456.
Indu, S., Sejian, V., Kumar, D., Pareek, A., Mohammad, S., Naqvi, K., 2015. Ideal proportion of roughage and concentrate for Malpura ewes to adapt and reproduce in a semi-arid tropical environment. Trop. Anim. Health Prod. 47(8), 1487-1495.
Kelly, A.C., Bidwell, C.A., McCarthy, F.M., Taska, D.J., Anderson, M.J., Camacho, L.E., Limesand, S.W., 2017. RNA sequencing exposes novel adaptive and immune responses to intrauterine growth restriction in fetal sheep islets. Endocrinology. 158(4):743–755.
Kukurba, K.R., Montgomery, S.B., 2015. RNA Sequencing and Analysis. Cold Spring Harb Protoc. 11: 951–969.
D Li, Y., Kong, L., Deng, M., Lian, Z., Han, Y., Sun, B., Guo, Y., Liu, G., Liu, D., 2019. Heat stress-responsive transcriptome analysis in the liver tissue of Hu sheep, Genes (Basel), 10, 395. doi: 10.3390/genes10050395.
Lu, Z., Chu, M., Li, Q., Jin, M., Fei, X., Ma, L., Zhang, L., Wei, C., 2019. Transcriptomic analysis provides novel insights into heat stress responses in sheep, Animals (Basel), 9, 387. doi: 10.3390/ani9060387.
Luna-Nevarez, G.., Kelly, A.C., Camacho, L.E., Limesand, S.W., Reyna-Granados, J.R., Luna-Nevarez, P. 2020. Discovery and validation of candidate SNP markers associated to heat stress response in pregnant ewes managed inside a climate-controlled chamber. Trop. Anim. Health Prod. 52, 3457-3466.
Luna-Nevárez, G., Pendleton, A.L., Ramirez-Acosta, R.I., Limesand, S.W., Reyna-Granados, J.R. Luna-Nevárez, P. 2021. Genome-wide association study of a thermo-tolerance indicator in pregnant ewes exposed to an artificial heat-stressed environment. J. Thermal Biol. 101:103095. https://doi.org/10.1016/j.jtherbio.2021.103095.
Luna-Nevarez, P., Rincon, G., Medrano, J.F., Riley, D.G., Chase, C.C. Jr, Coleman, S.W., Vanleeuwen, D.M., DeAtley, K.L., Islas-Trejo, A., Silver, G.A., Thomas, M.G., Single nucleotide polymorphisms in the growth hormone-insulin-like growth factor axis in straightbred and crossbred Angus, Brahman, and Romosinuano heifers: population genetic analyses and association of genotypes with reproductive phenotypes, J. Anim. Sci., 89(4), 926-34 (2011). doi: 10.2527/jas.2010-3483.
Macciotta, N. P. P., Biffani, S., Bernabucci, U., Lacetera, N., Vitali, A., AjmoneMarsan, P., Nardone, A., 2017. Derivation and genome-wide association study of a principal component based measure of heat tolerance in dairy cattle. J. Dairy Sci. 100, 4683–4697.
Peters, S.O., Kizilkaya, K., Garrick, D.J., Fernando, R.L., Reecy, J.M., Weaber, R.L., Silver, G.A., Thomas, M.G., 2013. Heritability and Bayesian genome-wide association study of first service conception and pregnancy in Brangus heifers, J. Anim. Sci., 91, 605–612. doi: 10.2527/jas.2012-5580.
Rajaud A., Noblet-Ducoudré N., 2017. Tropical semi-arid regions expanding over temperate latitudes under climate change, Clim. Change, 144, 703–719. doi: 10.1007/s10584-017-2052- 7.
Rojas-Downing M.M., Nejadhashemi P.A., Timothy H., Woznicki S.A., 2017. Climate change and livestock: impacts, adaptation, and mitigation, Clim. Risk. Manag., 16, 145–163. 10.1016/j.crm.2017.02.001.
Shaji, S., Sejian, V., Bagath, M., Manjunathareddy, G.B., Kurien, E.K., 2016. Summer season rekated heat and nutritional stresses on the adaptive capability of goats based on blood biochemical response and hepatic HSP70 gene expression. Biol. Rhytm Res. 48, 65-83.
Sigdel, A., Abdollahi-Arpanahi, R., Aguilar, I., Peñagaricano, F., 2019. Whole Genome Mapping Reveals Novel Genes and Pathways Involved in Milk Production Under Heat Stress in US Holstein Cows, Frontier in Genetics, 4, 1-10.
Tsartsianidou, V., Sánchez-Molano, E., Kapsona, V.V., Basdagianni, Z., Chatziplis, D., Arsenos, G., Triantafyllidis, A., Banos, G., 2021. A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in Mediterranean domestic sheep, Genet. Sel. Evol., 53, 90. doi: 10.1186/s12711-021-00682-7.
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., Pachter, L. 2012. Differential gene and transcript expression analysis of RNAseq experiments with TopHat and Cufflinks. Nature Protocols. 7(3):562–578.
Weng, Z.Q., Su, H., Saatchi, M., Lee, J., Thomas, M.G., Dunelberger, J.R., Garrick, D.J., Genome-wide association study of growth and body composition traits in Brangus beef cattle, Livest. Sci., 183, 4–11 (2016).
Copyright (c) 2022 Guillermo Luna-Nevárez, Javier R. Reyna-Granados, Rosa I. Luna-Ramirez, Sean W. Limesand, Pablo Luna-Nevárez

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.