Association between weaning, intestinal health of weaned piglets and the consumption of diets with probiotics and potato protein concentrate

  • Samantha E. Bautista Marín Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, México https://orcid.org/0000-0002-8950-2458
  • Teresita de Jesus Hijuitl Valeriano Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, México
  • Gerardo Mariscal Landín Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP).
  • José Guadalupe Gómez Soto Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro https://orcid.org/0000-0002-8837-3578
  • Christian I. Narváez Briones Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro https://orcid.org/0000-0002-8685-348X
  • Konisgmar Escobar García Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro https://orcid.org/0000-0001-7853-5521
  • Tércia Cesária Reis de Souza Universidad Autónoma de Querétaro https://orcid.org/0000-0002-9025-4332
Keywords: additives, functional foods, weaning piglets, yeasts, intestinal microbiota

Abstract

Weaning is a very critical period in the life of the piglet that causes a setback in the development of the digestive organs, resulting in poor feed digestion and the presence of post-weaning diarrhea. Due to the potential prohibition of the use of antibiotics in animal feed as growth promoters, complications are observed that can lead to poor performance and death of recently weaned animals. The use of functional feeds in antibiotic-free diets for newly weaned piglets is practically mandatory to maintain a healthy gastrointestinal tract and reduce the presence and severity of post-weaning diarrhea. Probiotic yeasts and potato protein concentrate have antimicrobial actions that can inhibit pathogenic bacteria and favor the presence of a beneficial microbiota that helps maintain intestinal health.

Downloads

Download data is not yet available.

Author Biography

Tércia Cesária Reis de Souza, Universidad Autónoma de Querétaro

Médica Veterinaria (1979) y M. en C. en Zootecnia (1983) por la Universidade Federal de Minas Gerais - Brasil; Doctor en Ciencias Biológicas (1992) por la Université de Rennes I - Francia. Porfesor Adjunto de la Universidade Federal da Bahia (Brasil) de 1983 a 1994. Cátedra Patrimonial de Excelencia (CONACYT) en la Universidad Veracruzana (México) de 1994 a 1995. Profesor investigador de la Universidad Autónoma de Querétaro (México) de 1996 hasta la fecha. SNI nivel I de 1998 hasta 2008. Profesor perfil PROMEP (SEP, México) de 2000 a la fecha.

References

Barszcz, M., and J. Skomiał. 2011. The development of the small intestine of piglets-chosen aspects. Journal of Animal Feed Science, 20:3-15. https://www.researchgate.net/

Bártová, V., J. Bárta, and M. Jarošová. 2019. Antifungal and antimicrobial proteins and peptides of potato (Solanum tuberosum L.) tubers and their applications. Appl Microbiol Biotechnol, 103:5533-5547. https://link.springer.com/article/10.1007/s00253-019-09887-9

Bazay, D. G. 2010. Uso de los probióticos en la alimentación animal con énfasis en Saccharomyces cerevisiae. Revisión bibliográfica. Sistema de Revisiones en Investigación Veterinaria de San Marco, 20:2-3.

Burrin, D. and B. Stoll. 2003. Intestinal nutrient requirements in weanling pigs. En: Pluske, J. R., M.W.A. Verstegen, and H. Le Dividich (Eds.), The Weaner Pig: Concepts and Consequences. Wageningen Academic Publishers, The Netherlands, pp. 301–335.

Buts, J. P., N. Dekeyser and L. De Raedemaeker. 1994. Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatric Research, 36:522-527.

Buts J. P., N. Dekeyser, C. Stiltmant, E. Delem, F. Smets and E. Sokal. 2006. Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatric Research, 60(1):24-29.

Canibe, N., H. Miettinen and B. B. Jensen. 2008. Effect of adding Lactobacillus plantarum or a formic acid containing-product to fermented liquid feed on gastrointestinal ecology and growth performance of piglets. Livestock Science, 114(2-3):251-262.

Celi, P., A.J. Cowieson, F. Fru-Nji, R. E. Steinert, A. M. Kluenter and V. Verlhac. 2017. Gastrointestinal functionality in animal nutrition and health: new opportunities for sustainable animal production. Animal Feed Science and Technology, 234:88-100.

Choudhari A., S. Shinde and B. N. Ramteke. 2008. Prebiotics and Probiotics as health promoter. Veterinary World, 1(2): 59-61.

Czerucka D., T. Piche and P. Rampal. 2007. Review article: yeast as probiotics- Saccharomyces boulardii. Alimentary pharmacology & therapeutics, 26(2):767-778.

Czerucka D. and P. Rampal. 2002. Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes and Infection 4(7):733-739.

De Lange, C. F. M., J. Pluske, J. Gong, and C. M. Nyachoti. 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science, 134(1-3):124-134.

Elmer G.W., S. W. Martin, K. L. Horner, L. V. McFarland and R. H. Levy. 1999. Survival of Saccharomyces boulardii in the rat gastrointestinal tract and effects of dietary fiber. Microbial Ecology in Health and Disease, 11(1):29-34.

Everaert, N., S. Van Cruchten, B. Weström, M. Bailey, C. Van Ginneken, T. Thymann and R. Pieper. (2017). A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis. Animal Feed Science and Technology, 233(1):89-103.

Figueroa, V. J. L., M. E. E. Chi, R. M. Cervantes and V. I. A. Domínguez. 2006. Alimentos funcionales para cerdos al destete. Veterinaria Mexico, 37(1):117-136.

Froidmont, E., B. Wathelet, R. Oger, J. M. Romnée, A. Colinet, D. Cloet, M. Didelez, J. C. Pichon, C. Boudry , G. Jean and N. Bartiaux-Thill. 2008. Nutritional properties of potato protein concentrate compared with soybean meal as the main protein source in feed for the double-muscled Belgian Blue bull. Animal, 3(2):200-208.

Gómez Insuasti, A. S., D. V. Collazos and F. Argote. 2008. Efecto de la dieta y edad del destete sobre la fisiología digestiva del lechón. Biotecnología En El Sector Agropecuario Y Agroindustrial, 6(1):32-41. Recuperado a partir de https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/681

Gresse R, F. Chaucheyras-Durand, M. A. Fleury, T. Van de Wiele, E. Forano and S. Blanquet-Diot. 2017. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends in Microbiology, 25(10):851-873.

Hertrampf, J. W. and F. Piedad-Pascual. 2003. Handbook on ingredients for aquaculture feeds. Springer Science & Business Media, 573 p.

Hudson, L. E., C. D. McDemott, T. P. Stewart, W. H. Hudson, D. Rios, M. B. Fasken, A. H. Corbett, and T. J. Lamb. 2016. Characterization of the probiotic yeast Saccharomyces boulardii in the healthy mucosal immune system. PloS one 11(4):0153351.

Islas, I., Y. Minero and A. C. James. 2005. Proteínas contra las infecciones de las plantas. Ciencia 3(1):64-74.

Jin, Z., Y. X. Yang, J. Y. Choi, P. L. Shinde, S. Y. Yoon, H. T. Lim et al. 2008a. Effects of potato (Solanum tuberosum L. cv. Golden valley) protein having antimicrobial activity on the growth performance, and intestinal microflora and morphology in weanling pigs. Animal Feed Science and Technology, 140(1):139–154.

Jin, Z., Y. X. Yang, J. Y. Choi, P. L. Shinde, S. Y. Yoon, H. T. Lim et al. 2008b. Potato (Solanum tuberosum L. cv. Gogu valley) protein as a novel antimicrobial agent in weanling pigs. Journal of Animal Science, 86(7):1562-1572.

Jin, Z., Y. X. Yang, J. Y. Choi, P. L. Shinde, S. Y. Yoon, T. W. Hahn et al. 2009. Use of refined potato (Solanum tuberosum L. cv. Gogu valley) protein as an alternative to antibiotics in weanling pigs. Livestock Science, 124(1-3):26–32.

Johnson, R. W. 1997. Inhibition of growth by pro-inflammatory cytokines: an integrated view. Journal of Animal Science, 75(5): 1244-1255.

Kelly, D., J. A. Smyth and K. J. McCracken. 1991. Digestive development of the early-weaned pig: 1. Effect of continuous nutrient supply on the development of the digestive tract and on changes in digestive enzyme activity during the first week post-weaning. British Journal of Nutrition, 65(2):169-180.

Kim, J. Y., S. C. Park, M. H. Kim, H. T. Lim, Y. Park and K. S. Hahm. 2005. Antimicrobial activity studies on a trypsin–chymotrypsin protease inhibitor obtained from potato. Biochemical and Biophysical Research Communications, 330(3):921– 927.

Kim, M. H., S. C. Park, J. Y. Kim, S. Y. Lee, H. T. Lim, H. Cheong and Y. Park. 2006. Purification and characterization of a heat-stable serine protease inhibitor from the tubers of new potato variety “Golden Valley”. Biochemical and Biophysical Research Communications, 346(3):681-686.

Klein, S. M., G. W. Elmer, L. V. McFarland, C. M. Surawicz and R. H. Levy. 1993. Recovery and elimination of the biotherapeutic agent, Saccharomyces boulardii, in healthy human volunteers. Pharmaceutical Research, 10(11):1615-1619.

Kluess, J., U. Schoenhusen, W. B. Souffrant, P. H. Jones, and B. G. Miller. 2010. Impact of diet composition on ileal digestibility and small intestinal morphology in early-weaned pigs fitted with a T-cannula. Animal, 4(4):586-594.

Krammer, M. and U. Karbach. 1993. Antidiarrheal action of the yeast Saccharomyces boulardii in the rat small and large intestine by stimulating chloride absorption, Zeitschrift fur Gastroenterologie, 31(1):73–73.

Liu, Y., C. D. Espinosa, J. J. Abelilla, G. A. Casas, L. V. Lagos, S. A. Lee, W. B. Kwon, J. K. Mathai, D. M. D. L. Navarro, N. W. Jaworski and H. H. Stein. 2018. Non-antibiotic feed additives in diets for pigs: A review. Animal. Nutrition, 4(2):113-125.

Łukaszewicz, M. In: Rigobelo, E. C. 2012. Saccharomyces cerevisiae var. boulardii – Probiotic Yeast. IntechOpen. https://www.intechopen.com/chapters/39643 doi: 10.5772/50105

Ma, X. K., Q. H. Shang, Q. Q. Wang, J. X. Hu and X. S. Piao. 2019. Comparative effects of enzymolytic soybean meal and antibiotics in diets on growth performance, antioxidant capacity, immunity, and intestinal barrier function in weaned pigs. Animal Feed Science and Technology, 248(1):47-58.

Martins F., Nardi R., Arantes R.M.E., Rosa C., Neves M.J., Nicoli J.R. 2005.Screening of yeast as probiotic based on capacities to colonize the gastrointestinal tract and protect against enteropathogen challenge in mice. The Journal of General and Applied Microbiology, 51(2):83-92.

McFarland, L. 2010. Systematic review and meta-analysis of Saccharomyces cerevisiae boulardii in adult patients. World journal of gastroenterology, 16(18):2202-2222.

Melin, L., M. Jensen-Waern, A. Johannisson, M. Ederoth, M. Katouli, P. Wallgren. 1997. Development of selected faecal microflora and of phagocytic and killing capacity of neutrophils in young pigs. Veterinary Microbiology, 54(3-4):287-300.

Moeser, A. J., S. C. Pohl, M. Rajput. 2017. Weaning stress and gastrointestinal barrier development: implications for lifelong gut health in pigs. Animal Nutrition, 3(4):313-321.

Moré, M., A. Swidinski. 2015. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis- a review. Clinical and experimental gastroenterology, 8(1):237-255.

Mu, T. H., S. S. Tan, Y. L. Xue. 2009. The amino acid composition, solubility and emulsifying properties of sweet potato protein. Food Chemistry, 112(4):1002–1005.

Parrado, S., J. Chamorro and L. Serrano. 2006. Estudio preliminar: orégano como promotor de crecimiento en lechones destetados. Revista de Medicina Veterinaria, 12:81-88.

Pedersen, C. and J. E. Lindberg. 2004. Comparison of Low-glycoalkaloid Potato Protein and Fish Meal as Protein Sources for Weaner Piglets. Acta Agriculturae Scandinavica, Section A-Animal Science, 54(2):75-80.

Pettigrew, J. E. 2006. Reduced use of antibiotic growth promoters in diets fed to weanling pigs: dietary tools, part 1. Animal Biotechnology, 17(2):207-215.

Pluske, J. R., D. J. Hampson and I. H. Williams. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livestock Production Science, 51(1-3):215-236.

Pluske, J. R., D. L. Turpin and J. C. Kim. 2018. Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2):187-196.

Pohl, C. S., J. E. Medland, E. Mackey, L. L. Edwards, K. D. Bagley, M. P. DeWilde, K. J. Williams and A. J. Moeser. 2017. Early weaning stress induces chronic functional diarrhea, intestinal barrier defects, and increased mast cell activity in a porcine model of early life adversity. Neurogastroenterology & Motility, 29(11). p.13118

Pothoulakis, C., C. P. Kelly, M. A. Joshi, N. Gao, C. J. O’Keane, I. Castagliuolo and T. Lamont. 1993. Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat illeum. Gastroenterology, 104(4):1108-1115.

Quintero, M.A. and L. N. Huerta. 1996. Uso de probióticos en la nutrición de cerdos. Una revisión. Revista Científica de la Facultad de Ciencias Veterinarias de la Universidad del Zulia, 6(2):75-82. Recuperado a partir de https://www.produccioncientificaluz.org/index.php/cientifica/article/view/14248.

Rajkowska, K., A. Kunicka, A. Rygata. 2012. Probiotic activity of Saccharomyces cerevisiae var. boulardii against human pathogens. Food Technology and Biotechnology, 50(2):230-236.

Refstie, S. and H. A. Tiekstra. 2003. Potato protein concentrate with low content of solanidine glycoalkaloids in diets for Atlantic salmon (Salmo salar). Aquaculture, 216(1-4), 283-298.

Reis de Souza, T. C., G. Mariscal, K. Escobar, A. Aguilera, A. Magné. 2012. Cambios nutrimentales en el lechón y desarrollo morfofisiológico de su aparato digestivo. Veterinaria México, 43(2):155-173.

de Souza, T. C. R., A. Aguilera, S. Rubio, W. Machado, K. Escobar, J. G. Gómez et al. 2019. Growth performance, diarrhoea incidence, and nutrient digestibility in weaned piglets fed an antibiotic-free diet with dehydrated porcine plasma or potato protein concentrate. Annals of Animal Science, 19(1):59–172.

Segura, A., M. Moreno, F. Madueño, A. Molina, F. García-Olmedo. 1999. Snakin-1, a peptide from potato that is active against plant pathogens. Molecular Plant-Microbe Interactions, 12(1):16-23.

Sève, B. 2000. Effects of underfeeding during the weaning period on growth, metabolism, and hormonal adjustments in the piglet. Domestic animal endocrinology, 19(2), 63-74.

Song, J., Y. L. Li and C. Hong Hu. 2013. Effects of copper-exchanged montmorillonite, as alternative to antibiotic, on diarrhea, intestinal permeability and proinflammatory cytokine of weanling pigs. Applied Clay Science, 77:52-55.

Stein, H.H. and D. Y. Kil. 2006. Reduced use of antibiotic growth promoters in diets fed to weanling pigs: Dietary tools, Part 2. Animal Biotechnology, 17(2):217-231.

Taciak, M., A. Tuśnio and B. Pastuszewska. 2011. The effects of feeding diets containing potato protein concentrate on reproductive performance of rats and quality of the offspring. Journal of Animal Physiology and Animal Nutrition, 95(5):556-563.

Sangil P. T., R. H. Siggers, M. Schmidt, J. Elnif, C. R. Bjornvad, T. Thymann, M. L. Grondahl, A. K. Hansen et al. 2006a. Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology, 130(6):1776-1792.

Sangil P. T., R. H. Siggers, M. Schmidt, J. Elnif, C. R. Bjornvad, T. Thymann, M. L. Grondahl, A. K. Hansen et al. 2006b. Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology, 130:1776-1792.

Published
2023-05-03
How to Cite
Bautista Marín, Samantha E., Teresita de Jesus Hijuitl Valeriano, Gerardo Mariscal Landín, José Guadalupe Gómez Soto, Christian I. Narváez Briones, Konisgmar Escobar García, and Tércia Cesária Reis de Souza. 2023. “Association Between Weaning, Intestinal Health of Weaned Piglets and the Consumption of Diets With Probiotics and Potato Protein Concentrate”. Archivos Latinoamericanos De Producción Animal 31 (2), 115-37. https://doi.org/10.53588/alpa.310201.
Section
Invited papers