The carbon footprint of beef production from cull cows finished on sown pastures in the savannas of the Colombian Orinoquía

Keywords: cull cows, methane, savanna, tropical grass

Abstract

Neotropical savannas of the Colombian Orinoquia are largely dedicated to year-round beef production. There is evidence of sustainable animal production in this savanna environment, but little is known of the links among animal lifetime performance, greenhouse gas emissions, and soil organic carbon (SOC) accumulation at the system level. The main objective of this study was to estimate C footprint of beef production from Brahman (Bos indicus) cull cows finished on contrasting C4-grass-based pastures in the Orinoco basin. Long-term individual variations of liveweights and reproductive performance were used in an Excel® dynamic model to estimate dry matter intake, methane (CH4) emissions and carcass traits, and C footprint at the farm gate. Values from the developed database were computed for cows born and raised on the savanna, bred on Brachiaria decumbens, and later finished on B. humidicola [Scenario (SCE) 1, SCE 2]; B. decumbens (SCE 3); Andropogon gayanus + Melinis minutiflora + Stylosanthes capitata (SCE 4); and A. gayanus + S. capitata (SCE 5) pastures. We estimated C footprints of SCE 1, SCE 3, and SCE 5 using published values of the rates of emission of CH4 and nitrous oxide from the soil, feces, and urine; and accumulation of SOC in soil during the fattening period. The majority of the estimated overall C footprint values at the system level were negative due to expected net SOC accumulation during the fattening period. Depending on the expected quality of management, systems ranged from near equilibrium in C balance to net increases in SOC accumulation.

Downloads

Download data is not yet available.

Author Biographies

Carlos A. Ramírez Restrepo, CR Eco-efficient Agriculture Consultancy (CREAC®), 46 Bilbao Place, Bushland Beach, QLD 4818, Australia

Doctor of Veterinary Medicine and Zootechnics and Animal Scientist with a strong focus on research, teaching, extension, multiculturalism, management, and leadership in terms of pastoralism, ruminant nutrition, metabolism, greenhouse gas (GHG) emissions, sustainable productivity, and nutritional security. I have also undertaken extra tertiary qualifications to improve business, leadership and management, management of human resources, and training and assessment skills.
Based on collaborative networking and original research, I am progressively developing the Eco-efficient Agriculture Consultancy (CREAC®) service to better understand the environmental impact of cattle production systems and technical interventions in the extensive savanna environment and elsewhere.

Raul R. Vera-Infanzón, Private Consultant Services, 2 Norte 443, Viña del Mar, Chile

Interested and working on ruminant production systems under grazing, with emphasis on systems' analyses and modelling. Also, venues for system diversification and value-added products, in particular sheep and beef cattle systems. Interested in characterizing and developing animal products, mainly dairy products, with potential health benefits for consumers. I have a continued interest in the integration of various forage, pasture and rangeland resources to increase systems' efficiency.

Idupulapati M. Rao, International Center for Tropical Agriculture (CIAT), Km 17 Cali-Palmira CP 763537, Apartado Aéreo 6713, Cali,

He is an Emeritus Scientist (Plant Nutritionist and Physiologist) at the International Center for Tropical Agriculture (CIAT). He worked at CIAT, based in Cali, Colombia for 27 years. He has experience across a wide range of agricultural research areas including plant physiology; plant nutrition; agronomy; plant-soil-livestock-climate interactions; and climate variability and change, mostly related to the sustainable intensification of crop-livestock systems, especially for smallholders in marginalized environments. He has extensive scientific background with more than 38 years of experience in the implementation of agricultural research and research for development. He worked for about 10 years at the University of Illinois and the University of California before joining CIAT in 1989. His work at CIAT has contributed to the development of abiotic stress (soils and climate)-adapted tropical forage and common bean cultivars for sustainable intensification of crop-livestock systems in the tropics.  As part of multidisciplinary teams, he has gained extensive knowledge and experience to impact on smallholder agriculture through improved food and nutritional security and natural resource management to fulfill United Nations’ Sustainable Development Goals (SDGs) to end extreme poverty and for tackling the climate change. He was also part of the CIAT team that won the excellence in science award from the CGIAR for outstanding partnership in 2001.

References

Adesogan, A. T., Dubeux, J. C., and Sollenberger, L. E. 2015. Nutrient movements through ruminant livestock production systems, in: Roy, M. M., Malaviya, D. R., Yadav, V. K., Singh, T., Sah, R. P., Vijay, D., A Radhakrishna, A. (Eds.), Proceedings of 23rd International Grassland Congress. Range Management Society of India, New Delhi, pp. 79–94.
AGROSAVIA. 2019. Adopción e impacto de los sistemas agropecuarios introducidos en la altillanura plana del Meta. Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Mosquera.
https://repository.agrosavia.co/handle/20.500.12324/35451
Allen, M. R., Shile, K. P., Fuglestvedt, J. S., Millar, R. J., Cain, M., Frame, D. J., and Macey, A. H., 2018. A solution to the misrepresentation of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. Clim. Atmos. Sci. 16:1–8.
https://doi.org/10.1038/s41612-018-0026-8
Andrade, G. I. P., Castro, L. G. G., Durán, A. D., Rodríguez, M. B., Rudas, G. L., Uribe. E. B., and Wills, E. H. 2009. La mejor Orinoquía que podemos construir. Elementos para la sostenibilidad ambiental del desarrollo. Universidad de los Andes, Bogotá.
Astigarraga, L., and Ingrand, S. 2011. Production flexibility in extensive beef farming systems. Ecol. Soc. 16(1):1–7.
Baptistella, J. L. C., Andrade, S. A. L., Favarin, J. L., and Mazzafera, P. 2020. Urochloa in tropical agroecosystems. Front. Sustain. Food Syst. 4:119.
https://doi.org/10.3389/fsufs.2020.00119
Black, J. L. 2014. Brief history and future of animal simulation models for science and application. Aust. J. Agric. Res. 54:1883–1895. https://doi.org/10.1071/AN14650
Black, J. L. 2018. Perspectives on animal research and its application. Anim. Prod. Sci. 56:756–766. https://doi.org/10.1071/AN15793
Boddey, R. M., Jantalia, C. P., Conceicao, P. C., Zanatta, J. A., Bayer, C., Mielniczuk, J., Dieckown J., Santos, H. P., Denardin, J. E., Aita, C., Giacomini, S. J., Alves, B.J.R., and Urquiaga, S. 2010. Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture. Glob. Chang. Biol. 16:784–795.
https://doi.org/10.1111/j.1365-2486.2009.02020.x
Boddey, R. M., Casagrande, D. R., Homem, B. G. C., and Alves, B. J. R., 2020. Forage legumes in grass pastures in tropical Brazil and likely impacts on greenhouse gas emissions: A review. Grass Forage Sci. 75(4):357–371. https://doi.org/10.1111/gfs.12498
Bray, S., Doran-Browne, N., and O’ Reagain, P. 2014. Northern Australian pasture beef systems. 1. Net carbon position. Anim. Prod. Sci. 54:1988–1994. https://doi.org/10.1071/AN14604
Braz, S. P., Urquiaga, S., Alves, B. J. R., Jantalia, C. P., Guimaraes, A. P., Santos, C. A., Santos, S. C., Pinheiro, E. F. M., and Boddey, R. M. 2013. Soil C stocks under productive and degraded Brachiaria pastures in the Brazilian Cerrado. Soil Sci. Soc. Am. J. 77:914–928.
https://doi.org/10.2136/sssaj2012.0269
Burrow, H. M., Johnston, D. J., Thompson, J. M., Reverter, A., Barwick, S. A., and Perry, D. 2006. Genetics of carcass and beef quality: take-home messages from the Beef CRC. in: CRC (Ed.), Proceedings Australian Beef – The Leader! Conference. Beef CRC, Armidale, pp. 69–78.
Bustamante, M. M. C., Corbeels, M., Scopel, E., and Roscoe, R. 2006. Soil carbon and sequestration potential in Cerrado region in Brazil, in: Lal, R., Cerri, C.C., Bernoux, M., Etcherves, J., Cerri, C.E. P. (Eds.), Carbon Sequestration in Soils of Latin America, CRC Press, Boca Raton, pp. 285–304.
Cardoso, A. S., Berndt, A., Leytem, A., Alves, B. J. R., and de Carvalho, I. N. O., Soares, L. H. d. B., Urquiaga, S., and Bodde, R. M. 2016. Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use. Agr. Syst. 143:86–96.
https://doi.org/10.1016/j.agsy.2015.12.007
Castaldi, S., Ermice, A., and Strumia, S. 2006. Fluxes of N2O and CH4 from soils of savannas and seasonally-dry ecosystems. J. Biogeogr. 33:401–415. https://doi.org/10.1111/j.1365-2699.2005.01447.x
Cerri, C. C., Moreira, C. S., Alves, P. A., Raucci, G. S., Castigioni, B de A., Mello, F. F. C., Cerri, D. G. P., and Cerri, C. E. P. 2016. Assessing the carbon footprint of beef cattle in Brazil: a case study with 22 farms in the state of Mato Grosso. J. Clean. Prod. 112:2593–2600. https://doi.org/10.1016/j.jclepro.2016.02.032
Charry, A., Narjes, M., Enciso, K., Peters, M., and Burkat, S. 2019. Sustainable intensification of bee production in Colombia – Chances for product differentiation and price premium. Agric. Food Econ. 7(22):1–18. https://doi.org/10.1186/s40100-019-0143-7
Chirinda, N., Loaiza, S., Arenas, L., Ruiz, V., Faverín, C., Alvarez, C., Savian, J. V., Belfon, R., Zuniga, K., Morales-Rincon, A., Trujillo, C., Arango, M., Rao, I., Arango, J., Peters, M., Barahona, R., Costa Jr., C., Rosenstock, T. S., Richards, M., Martinez-Baron, and Cardenas, L. 2019. Adequate vegetative cover decreases nitrous oxide emissions from cattle urine deposited in grazed pastures under seasonal conditions. Sci. Rep. 9:908.
https://doi.org/10.1038/s41598-018-37453-2
Colquhoun, D. 2017. The reproducibility of research and the misinterpretation of p-values. Royal Society Open Science.
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.171085
Conant, R. T., Cerri, C. E. P., Osborne, B. B., and Paustian, K. 2017. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27:662–668.
https://doi.org/10.1002/eap.1473
Córdoba, C. A. V., Hortúa, S. R., and León-Sicard, T. 2019. Resilience to climate variability: the role of perceptions and traditional knowledge in the Colombian Andes. Agroecol. Sustain. Food Syst. 44(4):419–445. https://doi.org/10.1080/21683565.2019.1649782
CORPOICA. 2010. Evaluación de crecimiento, calidad de la canal y cortes de carne en cinco grupos raciales bovinos de la Orinoquia Colombiana. Informe Técnico Final Proyecto. Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Ministerio de Agricultura y Desarrollo Rural (MADR), Federación Colombiana de Ganaderos (FEDEGAN), Corporación Comité de Ganaderos del Meta, Villavicencio.
Cottle, D. J., and Eckard, R. J. 2018. Global beef cattle methane emissions: yield prediction by cluster and meta-analyses. Anim. Prod. Sci. 58(12):2167–2177.
https://doi.org/10.1071/AN17832
da Silva, A. C., de Figueiredo, L. B., Janusckiewicz, E. R., da Silva, E. M., Pavezzi, R. B., Werner, J. B. K., Andrade, R. R., and Ruggieri, A. C. 2017. Impact of grazing intensity and seasons on greenhouse gas emissions in tropical grassland. Ecosystems. 20(4):845–859.
https://doi.org/10.1007/s10021-016-0065-0
Damian, J. M., Matos, E. S., Pedreira, B. C., Carvalho, F. C. F., Premazzi, L. M., Williams, S., Paustian, K., and Cerri, C. E. P. 2021. Predicting soil C changes after pasture intensification and diversification in Brazil. Catena. 202:105238.
https://doi.org/10.1016/j.catena.2021.105238
DANE. 2020. Series de población 1985-2020. Colombia estimaciones 1985-2005 y proyecciones 2005-2020 nacional y departamental desagregadas por sexo, área y grupos quinquienales de edad. Departamento Administrativo Nacional de Estadística (DANE), Bogotá.
https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/series-de-poblacion
de Figueiredo, C. C., Siqueira, R. D. V., and Carbone, C. M. A. 2010. Labile and stable fractions of soil organic matter under management systems and native Cerrado. Rev. Bras. Ciênc. Solo. 34:907–916. https://doi.org/10.1590/S0100-06832010000300032
Díaz, M., Vergara, D., Castiblanco, V., and Burkart, S. 2018. Colombian cattle producers' preferences for improved forage technologies: chances for forage breeding and selection. Poster, TROPENTAG, Ghent.
https://cgspace.cgiar.org/bitstream/handle/10568/97078/Diaz_MF_et_al._2018_Colombian_Cattle_producers_Preferences_for_Improved_Forage_Technologies_web.pdf?sequence=1
Dietzel, R., Liebman, M., and Archontoulis, S. 2017. A deeper look at the relationship between root carbon pools and the vertical distribution of the soil carbon pool. Soil. 3:139–152.
https://doi.org/10.5194/soil-3-139-2017
dos Santos, C. A., Rezende, C. P., Machado Pinheiro, E. F., Pereira, J. M., Alves, B. J. R., Urquiaga, S., and Boddet, R. M. 2019. Changes in soil carbon stocks after land-use change from native vegetation to pastures in the Atlantic forest region of Brazil. Geoderma. 337:394–401. https://doi.org/10.1016/j.geoderma.2018.09.045
Durrer, A., Margenot, A. J., Silva, L. C. R., Bohannan, B. J. M., Nusslein, K., Haren, J. v., Andreote, F. D., Parikh, S. J., and Rodrigues, J. L. M. 2021. Beyond total carbon: conversion of amazon forest to pasture alters indicators of soil C cycling. Biogeochemistry. 152:179–194. https://doi.org/10.1007/s10533-020-00743-x
Eckard, R. J., Snow, V. O., Johnson, I. R., and Moore, A. D. 2014. The challenges and opportunities when integrating animal models into grazing system models for evaluating productivity and environmental impact. Anim. Prod. Sci. 54(12):1896–1904.
https://doi.org/10.1071/AN14551
Edwards-Jones, G., Plassmann, K., and Harris, I. M. 2009. Carbon footprint of lamb and beef production systems: insights from an empirical analysis of farms in Wales, UK. J. Agric. Sci. 147:707–719. https://doi.org/10.1017/S0021859609990165
ENA. Encuesta nacional agropecuaria (ENA). Departamento Nacional de Estadística (DANE), Bogotá. https://www.dane.gov.co/
FAO. 2009. High-level expert forum - How to feed the world in 2050. Food and Agriculture Organization of the United Nations (FAO), Rome.
FAO. 2013. Greenhouse emissions from ruminant supply chains. A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome.
FAO. 2015. Climate change and food systems: Global assessments and implications for food security and trade. Food and Agriculture Organization of the United Nations (FAO), Rome.
Fisher, M. J., Braz, S. P., dos Santos, R. S. M., Urquiaga, S., Alves, B. J. R., and Boddey, R. M. 2007. Another dimension to grazing systems: Soil carbon. Trop. Grassl. 41:65–83.
Fisher, M. J., Rao, I. M., Ayarza, M. A., Lascano, C. E., Sanz, J. I., Thomas, R. J., and Vera, R. R. 1994. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature. 371:236–238. https://doi.org/10.1038/371236a0
Fisher, M. J., Thomas, R. J., and Rao, I. M. 1998. Management of tropical pastures in acid-soil savannas of South America for carbon sequestration in the soil, in: Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A. (Eds.), Management of carbon sequestration in soil (Advances in soil science). CRC Press, Boca Raton, pp. 405–420.
GA. 2020. Area of Australia - States and Territories. Australian Government Geoscience Australia (GA), Canberra.
https://www.ga.gov.au/scientific-topics/national-location-information/dimensions/area-of-australia-states-and-territories
Garcia-Montiel, D. C., Steudler, P. A., Piccolo, M., Melillo, J. M., Neill, C., and Cerri, C. E. 2001. Controls of soil nitrogen emissions from forest and pastures in the Brazilian Amazon. Global Biogeochem. Cycles. 15(4):1021–1030. https://doi.org/10.1029/2000GB001349
Gasser, T., Peters, G. P., Fuglestvedt, J. S., Collins, W. J., Shindell, D. T., and Ciais, P. 2017. Accounting for the climate-carbon feedback in emission metrics. Earth Syst. Dyn. 8:235–253. https://doi.org/10.5194/esd-8-235-2017
Glover, J., Duthie, D. W., and French, M. H. 1957. The apparent digestibility of crude protein by the ruminant: I. A synthesis of the results of digestibility trials with herbage and mixed feeds. J. Agric. Sci. 48(3):373–378.
https://doi.org/10.1017/S0021859600031750
Grace, J., San José, J., Meir, P., Miranda, H. S. P., and Montes, R. A. 2006. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33:387–400.
https://doi.org/10.1111/j.1365-2699.2005.01448.x
Grandl, F., Ameichanka, S. L., Furger, M., Clauss, M., Zeitz, J. O., Kreuzeer, M., and Schwarm, A. 2016. Biological implications of longevity in dairy cows: 2. Changes in methane emissions and efficiency with age. J. Dairy Sci. 99:3475–3485. https://doi.org/10.3168/jds.2015-10262
Griffin, R. E. 2015. When are old data new data? GeoResJ. 6:92–97.
https://doi.org/10.1016/j.grj.2015.02.004
Hess, H. -D. 1995. Grazing selectivity and ingestive behaviour of steers on improved tropical pastures in the eastern plains of Colombia. (Ph.D. Thesis). Swiss Federal Institute of Technology Zurich, Zurich.
Jones, R. M., and Tothill, J. C. 1985. BOTANAL - A field and computing package for assessment of plant biomass and botanical composition, in: Tothill, J.C., Mott, J. J. (Eds.), Proceedings of the International Savanna Symposium. Australian Academy of Science, Canberra, pp. 318–320.
Kanno, T., Macedo, M. C., Euclides, V. P. B., Bono, J. A., Santos, Jr. J. D. G., Rocha, M. C., and Beretta, L. G. R. 1999. Root biomass of tropical grass pastures under continuous grazing in Brazilian savannas. Grassl. Sci. 45:9–14.
Kim, S. C., Kim, K. U., and Kim, D. C. 2011. Prediction of fuel consumption of agricultural tractors. Appl. Eng. Agric. 27(5):705–709. https://doi.org/10.13031/2013.39565
Ku-Vera, J. C., Valencia-Salazar, S. S., Piñeiro-Vázquez, A. T., Molina-Botero, I. C., Arroyave-Jaramillo, J., Montoya-Flores, M. D., Lazos-Balbuena, F. J., Canul-Solís, J. R., Arceo-Castillo, J. I., Ramírez-Cancino, L., Escobar-Restrepo, C. S., Alayón-Gamboa, J. A., Jiménez-Ferrer, G., Zavala-Escalante, L. M., Castelán-Ortega, O. A., Quintana-Owen, P., Ayala-Burgos, A. J., Aguilar-Pérez, C. F., and Solorio-Sánchez, F. J. 2018. Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiratory chambers. Agric and For Meteor. 258:3–7.
https://doi.org/10.1016/j.agrformet.2018.01.008
Lascano, C., and Euclides, V. P. B., 1996. Nutritional quality and animal production of Brachiaria pastures, in: Miles, J. W., Maass, B. L., do Valle, C. B. (Eds), Brachiaria: Biology, agronomy, and improvement. CIAT, Cali, pp. 106–123.
Lascano, C., and Thomas, D. 1990. Quality of Andropogon gayanus and animal productivity, in: Toledo, J. M., Vera, R., Lascano, C., Lenné, J. M. (Eds.), Andropogon gayanus Kunth. A grass for tropical acid soils. CIAT, Cali, pp. 247–276.
Lavelle, P., Rodríguez, N., Arguello, O., Bernal, J., Botero, C., Chaparro, P., Gómez, Y., Gutiérrez, A., Hurtado, M. P., Loaiza, S., Pulido, S. X., Rodríguez, E., Sanabria, C., Velásquez, E., and Fonte, S.J. 2014. Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agric. Ecosys. Environ. 185:106–117.
https://doi.org/10.1016/j.agee.2013.12.020
Lessa, A. C. R., Madari, B. E., Paredes, D. S., Boddey, R. M., Urquiaga, S., Jantalia, C. P., and Alves, B. Jr. 2014. Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agric. Ecosys. Environ. 190:104–111. https://doi.org/10.1016/j.agee.2014.01.010
Marshall, N. A. 2010. Understanding social resilience to climate variability in primary enterprises and industries. Glob. Env. Change. 20:36–43.
https://doi.org/10.1016/j.gloenvcha.2009.10.003
Marshall, N. A., and Smajgl, A. 2013. Understanding variability in adaptative capacity on rangelands. Rangeland Ecol. Manage. 66:84–94. https://doi.org/10.2111/REM-D-11-00176.1
Marshall, N. A., Stokes, C. J., Webb, N. P., Marshall, P. A., and Lankester, A. J. 2014. Social vulnerability to climate change in primary producers: A typology approach. Agric. Ecosys. Environ. 186:86–93. http://dx.doi.org/10.1016/j.agee.2014.01.004
MINEDUCATION. 1985. Ley 0073 de Octubre 8 de 1985. Ministerio de Educación (MINEDUCATION), Bogotá.
https://www.mineducacion.gov.co/1759/w3-article-103974.html?_noredirect=1
Mora, C., Spirandelli, D., Franklin, E. C., Lynham, J., Kantar, M. B., Miles, W., Smith, C. Z., Freel, K., Moy, J., Louis, L. V., Barba, E. W., Bettinger, K., Frazier, A.G., Colburn, IX. J. F., Hanasaki, N., Hawkins, E., Hirabayashi, Y., Knorr, W., Little, C. M., Emanuel, K., Sheffield, J., Patz, J. A., and Hunter, C. L. 2018. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Chang. 8:1062–1071.
https://doi.org/10.1038/s41558-018-0315-6
Mueller, R. A., and Mueller, E. A. 2017. Fugitive methane and the role of atmospheric half-life. Geoinformatics & Geostatistics: An Overview. 5(3):1–7.
https://doi.org/10.4172/2327-4581.1000162
Murdy, J., Orford, J., and Bell, J. 2015. Maintaining legacy data: Saving Belfast Harbour (UK) tide-gauge data (1901–2010). GeoResJ. 6:65–73. https://doi.org/10.1016/j.grj.2015.02.002
Navas Ríos, C. L. 1999. Caracterización socioeducativa, evaluativa y comparativa de cuatro comunidades en los Llanos Orientales de Colombia (Master Thesis). Universidad de Antioquia, Medellín.
Pereira, J. M., Tarré, R. M., Macedo, R., Rezende, C. d. P., Alves, B. J. R., Urquiaga, S., and Boddey, R. M. 2009. Productivity of Brachiaria humidicola pastures in the Atlantic forest region of Brazil as affected by stocking rate and the presence of a forage legume. Nutr. Cycl. Agroecosystems. 83:179–196. https://doi.org/10.1007/s10705-008-9206-y
Ramírez-Restrepo, C. A., O’Neill, C. J., López-Villalobos, N., Padmanabha, J., and McSweeney, C. 2014. Tropical cattle methane emissions: the role of natural statins supplementation. Anim. Prod. Sci. 54:1294–1299. http://dx.doi.org/10.1071/AN14246
Ramírez-Restrepo, C. A., O’Neill, C. J., López-Villalobos, N., Padmanabha, J., Wang, J. K., and McSweeney, C. 2016a. Effects of tea seed saponin supplementation on physiological changes associated with blood methane concentration in tropical Brahman cattle. Anim. Prod. Sci. 56:457–465. http://dx.doi.org/10.1071/AN15582
Ramírez-Restrepo, C. A., Tan, C., O’Neill, C. J., López-Villalobos, N., Padmanabha, J., Wang, J. K., and McSweeney, C. 2016b. Methane production, fermentation characteristics and microbial profiles in the rumen of tropical cattle fed tea seed saponin supplement. Anim. Feed. Sci. Tech. 216:58–67. http://dx.doi.org/10.1016/j.anifeedsci.2016.03.005
Ramírez-Restrepo, C. A., and Vera, R. R. 2019. Body weight performance, estimated carcass traits and methane emissions of beef cattle categories grazing Andropogon gayanus, Melinis minutiflora and Stylosanthes capitata mixed swards and Brachiaria humidicola pasture. Anim. Prod. Sci. 56(4):729–750. https://doi.org/10.1071/AN17624
Ramírez-Restrepo, C. A., Vera-Infanzón, R. R., and Rao, I. M. (2020a) Predicting methane emissions, animal-environmental metrics and carbon footprint from Brahman (Bos indicus) breeding herd systems based on long-term research on grazing of neotropical savanna and Brachiaria decumbens pastures. Agric. Syst. 184:102892.
https://doi.org/10.1016/j.agsy.2020.102892
Ramírez-Restrepo, C. A., Vera, R. R., and Rao, I. M. 2019a. Dynamics of animal performance, and estimation of carbon footprint of two breeding herds grazing native neotropical savannas in eastern Colombia. Agric. Ecosys. Environ. 281:35–46.
https://doi.org/10.1016/j.agee.2019.05.004
Ramírez-Restrepo, C. A., Vera, R. R., and Rao, I. M. 2019c. Producción de carne, emisión de metano y huella de carbono en sistemas de hato de cría en pasturas de los Llanos Orientales de Colombia.
https://www.engormix.com/ganaderia-carne/articulos/produccion-carne-emision-metano-t44332.htm
Ramírez-Restrepo, C. A., Vera, R. R. I., and Rao, I.M. 2019b. Environmental performance of grazing beef cattle systems in the well-drained neotropical savannas of Colombia: A review of results from modelling research, in: Das, A., Das, S., Sarkar, S., Patra, A. K., Mandal, G. P., Soren, S. (Eds.), Nutritional Strategies for Improving Farm Profitability and Clean Animal Production. Book of Abstracts of International Conference on Animal Nutrition. Animal Society of India, Kolkata, p. 413.
Ramírez-Restrepo, C. A., and Vera-Infanzón R. R. 2019. Methane emissions of extensive grazing breeding herds in relation to the weaning and yearling stages in the Eastern Plains of Colombia. Rev. Med. Vet. Zoot. 66(2):111–130. https://doi.org/15446/rfmvz.v66n2.82429
Rao, I., Arango, J., Ishitani, M., Peters, M., Miles, J., Tohme, J., Castro, A., Cardoso, J. A., Worthington, M., Selvaraj, M., van der Hoek, R., Schultze-Kraft, R., Rincón, A., Plazas, C., Mendoza, R., Cuchillo, M., Tapasco, J., Martinez, J., Hyman, G., Moreta, D., Mena, M., Karwat, H., Nunez, J., Subbarao, G., and Cadisch, G. 2015. Strategic management for forage production and mitigation of environmental effects: Development of Brachiaria grasses to inhibit nitrification in soil, in: A. R. Evangelista, A. R., Avila, C. L. S., Casagrande, D. R., Lara, M. A. S., Bernardes, T. F. (Eds.), Proceedings of the 1st international conference on forages in warm climates. Universidade Federal de Lavras, Lavras, pp. 85–102.
Rao, IM. 1998. Root distribution and production in native and introduced pastures in the south American savannas, in: Box, J. E. Jr. (Ed.), Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands, and Forest Ecosystems. Kluwer Academic Publishers, Dordrecht, pp. 19–42.
Rao, I. M., Ayarza, M. A., and Thomas, R. J., 1994. The use of carbon isotope ratios to evaluate legume contribution to soil enhancement in tropical pastures. Plant Soil. 162:177– 182.
https://doi.org/10.1007/BF01347704
Rao, I. M,, Plazas, C., and Ricaurte, J. 2001b Root turnover and nutrient cycling in native and introduced pastures in tropical savannas, in: Horst, W. J., Schenk, M.K., Burkert, A., Claassen, N., H Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H–W., Romheld, V., Sattelmacher, B., Schmidhalter, U., Schubert, S., Wiren, N. V., Wittenmayer, L. (Eds.), Plant Nutrition: Food security and sustainability of agro-ecosystems through basic and applied research, Kluwer Academic Publishers, Dordrecht, pp. 976–977.
Rao, I. M., Rippstein, G., Escobar, G., and Ricaurte, J. 2001a. Producción de biomasa vegetal epígea e hipógea en las sabanas nativas, in: Rippstein, G., Escobar, G., Motta, F. (Eds.), Agroecología y biodiversidad de las sabanas en los llanos orientales de Colombia. CIAT, Cali, pp. 198–222.
Rivera, B. S. 1988. Performance of beef cattle herds under different pasture and management systems in the Llanos of Colombia (Doctoral dissertation). Technische Universitat, Berlin.
Roberts, A. J., Petersen, M. K., and Funston, R. N. 2015. Beef Species Symposium: Can we build the cowherd by increasing longevity of females? J. Anim. Sci. 93:4235–4243.
https://doi.org/10.2527/jas.2014-8811
Romero-Ruiz, M. H., Flantua, S. G. A., Tansey, K., and Berrio, J. C. 2011. Landscape transformations in savannas of northern South America: Land use/cover changes since 1987 in the Llanos Orientales of Colombia. Appl. Geogr. 32:766–776.
Romero, A. M. M., Cárdenas, J. H. A., Triana, M. E. O., and Muñoz, L. G. D. 2018. Caracterización y tipificación de los sistemas productivos de ceba de ganado bovino en la Orinoquia colombiana. Zootec. Tropic. 36:131–143.
Rondón M., Acevedo, D., Hernández, R. M., Rubiano, Y., Rivera, M., Amézquita, E., Romero, M., Sarmiento, L., Ayarza, M. A., Barrios, E., and Rao, I. M. 2006. Carbon sequestration potential of the neotropical savannas (Llanos) of Colombia and Venezuela, in: Lal, R., Kimble, J. (Eds.), Carbon sequestration in soils of Latin America. The Haworth Press, Inc., Binghampton, pp. 213–243.
Rotta, P. P., Menezes, A. C. B. M., Costa e Silva, F. C., Valadares Filho, S. deC., Prados, L. F., and Marcondes, M. I. 2016. Protein requirements for beef cattle., in: Valadares Filho, S. deC., Costa e Silva, L. F., Gionbelli, M. P., Rotta, P. P., Marscondes, M. I., Chizotti, M. L., Prados, L. F. (Eds), Nutrient requirements of Zebu and crossbred cattle BR-CORTE, 3rd edition, Universidade Federal de Viçosa., Viçosa, pp.185–212.
https://editorascienza.com.br/pdfs/br_corte_tabela_brasileira_de_exigencias_nutricionais_en.pdf
Rouquette, F. M. Jr., Redmon, L. A., Aiken, G. E., Hill, G. M., Sollenberger, and L., Andrae, J. 2009. ASAS Centennial Paper: Future needs of research and extension in forage utilization. J. Anim. Sci. 87(1):438–446. https://doi.org/10.2527/jas.2008-1273
Sanhueza, E., Cárdenas, L., Donoso, L., and Santana, M. 1994a. Effect of plowing on CO2, CO, CH4, N2O, and NO fluxes from tropical savannah soils. J. Geophys. Res. 99:16429–16434.
https://doi.org/10.1029/94JD00265
Sanhueza, E., Donoso, L., Scharffe, D., and Crutzen, P. J. 1994b. Carbon monoxide fluxes from natural, managed, or cultivated savannah grasslands. J. Geophys. Res. 99:16421–16427.
https://doi.org/10.1029/93JD02918
SAS. 2016. Statistical Analysis System. University Edition version 3.5. Cary, NC: SAS Institute.
https://www.sas.com/en_au/software/university-edition.html
Saravia, F. M., Dubeux Junior, J. C. B., Lira, M. de A., de Melo, A. C. L., dos Santos, M. V. F., Cabral, F de A., and Teixeira, V. I. 2014. Root development and soil carbon stocks of tropical pastures managed under different grazing intensities. Trop. Grassl-Forraj. Trop. 2:254–261.
Segnini, A., Xavier, A. A. P., Otaviani-Junior, P. L., Oliveira, P. P. A., Pedroso, A. d. F., Ferreira, M. F. F. P., Mazza, P. H. R., and Marcondes, D. B. P. M. 2017. Soil carbon stock and humification in pastures under different levels of intensification in Brazil. Sci. Agric. 76(1):33–40. https://doi.org/10.1590/1678-992X-2017-0131
Siqueira da Silva, H. M., Dubeux, J. C. B., Silveira, M. L., dos Santos, M. V. F., de Freitas, E. V., and Lira, M. de A. 2019. Root decomposition of grazed signalgrass in response to stocking and nitrogen fertilization rates. Crop Sci. 59:811–818.
https://doi.org/10.2135/cropsci2018.08.0523
Tedeschi, L.O. 2019. ASN-ASAS SYMPOSIUM: FUTURE OF DATA ANALYTICS IN NUTRITION: Mathematical modelling in ruminant nutrition: approaches and paradigms, extant models, and thoughts for upcoming predictive analytics. J. Anim. Sci. 97:1921–1944. https://doi.org/10.1093/jas/skz092
Thomas, R. J., and Asakawa, N. M. 1993. Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol. Biochem. 25:1351–1361. https://doi.org/10.1016/0038-0717(93)90050-L
Trujillo, W., Fisher, M. J., and Lal, R. 2006. Root dynamics of native savanna and introduced pastures in the Eastern Plains of Colombia. Soil Till. Res. 87:28–38.
University of Arkansas. 2019. The field capacity calculator.
https://www.uaex.edu/farm-ranch/economics-marketing/docs/FieldCapacity.xls
Urquiaga, S., Cadisch, G., Alves, B. J. R., Boddey, R. M., and Giller, K. E. 1998. Influence of decomposition of roots of tropical forage species on the availability of soil nitrogen. Soil Biol. Biochem. 30:2099–2106. https://doi.org/10.1016/S0038-0717(98)00086-8
Velásquez, J. C., and Ríos, M. 2010. Evaluación de la producción de carne a partir de vacas cebú de descarte. Revista de Ciencia Animal. 3:23–29.
Vera, R. R., and Hoyos, F. 2019. Long-term beef production from pastures established with and without annual crops compared with native savanna in the high savannas of Eastern Colombia: a compilation and analysis of on-farm results 1979-2016. Trop. Grassl-Forrajes Trop. 7(1):1–13. https://doi.org/10.17138/TGFT(7)1-13
Vera, R. R., Ramírez, C. A., and Velásquez, N. 2002. Growth patterns and reproductive performance of grazing cows in a tropical environment. Arch. Latinoam. Prod. Anim. 10:14–19.
Vera, R. R., Seré, C. 1989. On farm results with Andropogon gayanus, in: Toledo, J. M., Vera, R. R., Lascano, C., Lenné, J. L. (Eds.), Andropogon gayanus Kunth. A grass for tropical acid soils. CIAT, Cali, pp. 323–356.
Vera-Infanzón, R. R., and Ramírez-Restrepo, C. A. 2020. Long term beef production in extensive cow-calf systems in the tropical savannas of eastern Colombia. Rev. Med. Vet. Zoot. 67(1): 42–59. https://doi.org/10.15446/rfmvz.v67n1.87678
Viglizzo, E. F., Ricard, M. F., Taboada, M., and Vázquez-Amábile, G. 2019. Reassessing the role of grazing lands in carbon-balance estimations: Meta-analylsis and review. Sci. Total Environ. 661:531–542. https://doi.org/10.1016/j.scitotenv.2019.01.130
Waldrip, H. M., Todd, R. W., and Cole, N. A. 2013. Prediction of nitrogen excretion by beef cattle: A meta-analysis. J. Anim. Sci. 91:4290–4302. https://doi.org/10.2527/jas.2012-5818
Wiloso, E. I., Heijungs, R., Huppes, G., and Fang, K. 2016. Effect of biogenic carbon inventory on the life cycle assessment of bioenergy: challenges to the neutrality assumption. J. Clean. Prod. 125:78–85. https://doi.org/10.1016/J.JCLEPRO.2016.03.096
Wyborn, L., Hsu, L., and Parsons, M. 2015. Guest Editorial: Special issue rescuing legacy data for future science. GeoResJ. 6:106–107. https://doi.org/10.7916/D8H131FD
Zhu, Y., Merbold, L., Pelster, D., Diaz‐Pines, E., Wanyama, G. N., and Butterbach‐Bahl, K. 2018. Effect of dung quantity and quality on greenhouse gas fluxes from tropical pastures in Kenya. Global Biogeochem. Cycles. 32:1589–1604. https://doi.org/10.1029/2018GB005949
Published
2022-03-03
How to Cite
Ramírez Restrepo, Carlos A., Raul R. Vera-Infanzón, and Idupulapati M. Rao. 2022. “The Carbon Footprint of Beef Production from Cull Cows Finished on Sown Pastures in the Savannas of the Colombian Orinoquía”. Latin American Archives of Animal Production 31 (1 in progr), 1-20. https://doi.org/10.53588/alpa.310101.
Section
Original paper