Additive and non-additive effects for mature weight in beef cattle

Keywords: Additive effects;, Crossbreeding;, Heterosis, Mature cow weight

Abstract

Selection has emphasized animal growth, leading to an increase in their mature size affecting in some cases the pregnancy of the cows and the efficiency of the systems. Usually, crossbreeding improve productivity because of the genetic effects that the cows exploit, but the impact on mature weight (MW) has not been studied. The present study aimed at estimating MW and genetic parameters associated with the MW in crosses between two British breeds: Hereford (H/H) and Angus (A/A), a Continental: Salers (S/S), and a Zebu: Nelore (N/N). MW was analyzed at 4; 4.5; 5; 5.5 and 6 years of age using a repeated-measure sire model. For parameters estimation, an additive – dominant model was used including the fixed effects of breed group, contemporary group, and age as covariate linear and quadratic, with the linear regression fitted by breed group. Permanent environmental and sire were included as random effects. According to the results, it is expected to observe heterosis between H/H and N/N, however, the structure of the data may not be enough for estimate accurately the genetic parameters in this trait. The A/H, N/H, S/H, S/SH and H/NH cows were heavier than the H/H cows. All the breed groups continue gaining weight until six years of age. The results revealed that British crossbred animals are heavier than H/H at the first crossing but not in the following. Crossbred cows with proportions of 0.5 and greater for the Continental breed are heavier than H/H cows. Crosses between British and Zebu cows have higher mature weight than H/H at the first crossing and in backcrosses toward the British in all ages.

Downloads

Download data is not yet available.

References

Arango, J. A., L. V. Cundiff, and L. D. Van Vleck. 2002. Breed comparisons of Angus, Brahman, Hereford, Pinzgauer, Sahiwal, and Tarentaise for weight, weight adjusted for condition score, height, and body condition score. J. Anim. Sci. 80: 3142-3149. https://doi.org/10.2527/2002.80123142x

Arango, J. A., L. V. Cundiff, and L. D. Van Vleck. 2004. Comparisons of Angus, Charolais, Galloway, Hereford, Longhorn, Nellore, Piedmontese, Salers, and Shorthorn breeds for weight, weight adjusted for condition score, height, and condition score of cows. J. Anim. Sci. 82: 74-84. https://doi.org/10.2527/2004.82174x

Arthur, P. F., H. Hearnshaw, and P. D. Stephenson. 1999. Direct and maternal additive and heterosis effects from crossing Bos indicus and Bos taurus cattle: Cow and calf performance in two environments. Livest Prod Sci 57: 231-241. https://doi.org/10.1016/S0301-6226(98)00172-9

Boenig, L. 2011. Heterosis and heterosis retention for reproductive and maternal traits in Brahman x Hereford crossbred cows. Doctoral thesis, Texas A&M University, 79 pp.

Chenoweth, P. J. 1994. Aspects of reproduction in female Bos indicus cattle: a review. Aust Vet J 71: 422-426. https://doi.org/10.1111/j.1751-0813.1994.tb00961.x

Choy, Y., J. Brinks, and R. M. Bourdon. 2002. Repeated-measure animal models to estimate genetic components of mature weight, hip height, and body condition score. J. Anim. Sci. 80: 2071-2077. https://doi.org/10.1093/ansci/80.8.2071

Costa, R., Misztal, I., Elzo, M. A., Bertrand, J. K., Silva, L. O. C., and Łukaszewicz, M.. 2011. Estimation of genetic parameters for mature weight in Angus cattle. J. Anim. Sci. 89: 2680-2686. https://doi.org/10.2527/jas.2010-3574

Cundiff, L. V. 1970. Experimental Results on Crossbreeding Cattle for Beef Production. J. Anim. Sci. 30: 694-705. https://doi.org/10.2527/jas1970.305694x

Cunningham, E. P., and J. Connolly. 1989. Efficient design of crossbreeding experiments. Theor. Appl. Genet. 78: 381-386. https://doi.org/10.1007/BF00265300

Di Marco, O. 2006. Rendimiento de res. La industria cárnica latinoamericana 26.

Dickerson, G. E. 1969. Experimental approaches to utilizing breed resources. In: Animal Breeding Abstract. p 191-202.

Dickerson, G. E. 1973. Inbreeding and heterosis in animals. Proceedings of the Animal Breeding and Genetics Symposium in Honour of J.L. Lush.: 54-77.

Frisch, J. E., and J. E. Vercoe. 1977. Food intake, eating rate, weight gains, metabolic rate and efficiency of feed utilization in Bos taurus and Bos indicus crossbred cattle. Anim. Prod 25: 343-358. https://doi.org/10.1017/S0003356100016755

Gardner, C. O., and S. A. Eberhart. 1966. Analysis and Interpretation of the Variety Cross Diallel and Related Populations. Biometrics 22: 439-439. https://doi.org/10.2307/2528181

Gimeno, D., S. Avendaño, and R. Severino. 1995. Elección de un diseño óptimo de cruzamientos en un experimento con cuatro razas bovinas. In: Memorias de la XIV Reunión Latinoamericana de Producción Animal. p 914–918.

Goldberg, V., and O. Ravagnolo. 2015. Description of the growth curve for Angus pasture-fed cows under extensive systems1. J. Anim. Sci. 93: 4285-4290. https://doi.org/10.2527/jas.2015-9208

Gregory, K. E., and L. V. Cundiff. 1980. Crossbreeding in Beef Cattle: Evaluation of Systems. J. Anim. Sci. 51: 1224-1242. https://doi.org/10.2527/jas1980.5151224x

Gregory, K. E., L. V. Cundiff, and R. M. Koch. 1992. Breed effects and heterosis in advanced generations of composite populations on actual weight, adjusted weight, hip height, and condition score of beef cows. J. Anim. Sci. 70: 1742-1754. https://doi.org/10.2527/1992.7061742x

Jenkins, T. G. 2009. Interbreed evaluation of beef cattle productivity under low and moderate dry matter availables. In: Procedings of the 18th Association for the Advancement of Animal Breeding and Genetics. p 113-116. http://www.aaabg.org/proceedings18/files/jenkins113.pdf

Kaps, M., W. O. Herring, and W. R. Lamberson. 1999. Genetic and environmental parameters for mature weight in Angus cattle. J. Anim. Sci. 77: 569-574. https://doi.org/10.2527/1999.773569x

Key, K. L. 2005. Heterosis and heterosis retention for reproductive and maternal traits in Brahman - British crossbred cows. Doctoral thesis, Texas A&M University, 96 pp.

Kinghorn, B. P., and P. E. Vercoe. 1989. The effects of using the wrong genetic model to predict the merit of crossbred genotypes. Anim. Prod 49: 209-216. https://doi.org/10.1017/S0003356100032335

Koch, R. M. 1972. The Role of Maternal Effects in Animal Breeding: VI. Maternal Effects in Beef Cattle. J. Anim. Sci. 35: 1316-1323. https://doi.org/10.2527/jas1972.3561316x

Koetz-Junior, C., V. M. Roso, P. D. Fávaro, G. R. Pereira, M. H. Borges, F. A. Junior, J. O. Barcellos, and E. L. Ribeiro. 2019. Heritability estimation and genetic correlations for mature weight, visual scores, and growth traits in Nellore cattle. R. Bras. Zootec. 48: -. https://doi.org/10.1590/rbz4820170246

Kuehn, L., and R. Thallman. 2016. Across-breed EPD tables for the year 2016 adjusted to breed differences for birth year of 2014. Procedings of the Beef Improvement Federation: 127-154.

Lema, O. M., D. Gimeno, N. J. Dionello, and E. A. Navajas. 2011. Pre-weaning performance of Hereford, Angus, Salers and Nellore crossbred calves: Individual and maternal additive and non-additive effects. Livest Prod Sci 142: 288-297. https://doi.org/10.1016/j.livsci.2011.08.007

Melucci, L. M., C. A. Mezzadra, and E. L. Villarreal. 2006. Genetic components for breeding system traits in Angus-Hereford crossing. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Minas Gerais, Brazil, 13-18 August, 2006: 03-51. http://www.wcgalp.org/proceedings/2006/genetic-components-breeding-system-traits-angus-hereford-crossing

Mercadante, M. E. 2001. Análise de um experimento de seleção para crescimento em bovinos Nelore: respostas direta no peso ao sobreano e correlacionadas no tamanho e reprodução das matrizes. Tesis Doctoral, Universidade de São Paulo.

Meyer, K. 1995. Estimates of genetic parameters for mature weight of Australian beef cows and its relationship to early growth and skeletal measures. Livest Prod Sci 44: 125-137. https://doi.org/10.1016/0301-6226(95)00067-4

Morris, C. A., R. L. Baker, A. H. Carter, and J. C. Hunter. 1987. Reciprocal crossbreeding of angus and hereford cattle 3. cow weight, reproduction, maternal performance, and lifetime production. New Zealand Journal of Agricultural Research 30: 453-467. https://doi.org/10.1080/00288233.1987.10417957

Pravia, M. I., O. Ravagnolo, J. I. Urioste, and D. J. Garrick. 2014. Identification of breeding objectives using a bioeconomic model for a beef cattle production system in Uruguay. Livest Prod Sci 160: 21-28. https://doi.org/10.1016/j.livsci.2013.12.006

R Development Core Team. 2016. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Riley, D., and J. Crockett. 2006. Heterosis retention and the dominance model in Florida beef research. Florida Cattleman 70: 42-46.

Rosa, A. D. N., R. B. Lôbo, H. N. D. Oliveira, L. A. F. Bezerra, and A. D. L. Reyes Borjas. 2001. Peso adulto de matrizes em rebanhos de seleção da raça Nelore no Brasil. Revista Brasileira de Zootecnia 30: 1027-1036. https://doi.org/10.1590/S1516-35982001000400017

SAS Institute. 2014. 13. 2 User´s Guide: High-Performance Procedures, Cary, NC.

Smith, G. M., H. A. Fitzhugh, L. V. Cundiff, T. C. Cartwright, and K. E. Gregory. 1976. Heterosis for maturing patterns in Hereford, Angus and Shorthorn cattle. J. Anim. Sci. 43: 380-388. https://doi.org/10.2527/jas1976.432380x

Sobek, Z., A. Nienartowicz-Zdrojewska, J. Różańska-Zawieja, and I. Siatkowski. 2015. The evaluation of gestation length range for different breeds of Polish dairy cattle. Biometrical Letters 52: 37-45. http://www.au.poznan.pl/biometrical.letters/index.php?p=abstract&a=2015.52.1.4

Sölkner, J., and W. Fucks. 1994. ODCE Optimun Design of Crossbreeding Experiments. Version 1.O.

Sölkner, J., and J. W. James. 1990a. Optimum design of crossbreeding experiments: I. A basic sequential procedure. J. Anim. Breed. Genet 107: 61-67. https://doi.org/10.1111/j.1439-0388.1990.tb00008.x

Sölkner, J., and J. W. James. 1990b. Optimum design of crossbreeding experiments: II. Optimum relationship structures of animals within and between genetic groups. J. Anim. Breed. Genet 107: 411-420. https://doi.org/10.1111/j.1439-0388.1990.tb00052.x

Theunissen, A., M. M. Scholtz, and F. W. C. Neser. 2013. Crossbreeding to increase beef production: additive and non-additive effects on weight traits. S. Afr. J. Anim. Sci 43: 143-152. https://doi.org/10.4314/sajas.v43i2.4

Wiltbank, J. N., C. W. Kasson, and J. E. Ingalls. 1969. Puberty in crossbred and straightbred beef heifers on two levels of feed. J. Anim. Sci. 29: 602-605. https://doi.org/10.2527/jas1969.294602x

Wolf, J., O. Distl, J. Hyánek, T. Grosshans, and G. Seeland. 1995. Crossbreeding in farm animals. V. Analysis of crossbreeding plans with secondary crossbred generations. J. Anim. Breed. Genet 112: 81-94. https://doi.org/10.1111/j.1439-0388.1995.tb00545.x

Published
2020-10-01
How to Cite
Guillenea, Ana, Mario Lema, Diego Gimeno, Olga Ravagnolo, and Ana Carolina Espasandín. 2020. “Additive and Non-Additive Effects for Mature Weight in Beef Cattle”. Latin American Archives of Animal Production 28 (1-2), 19-28. https://ojs.alpa.uy/index.php/ojs_files/article/view/2795.
Section
Original paper