High protein level effects during last gestation in beef cattle in offspring postnatal growth
Abstract
A low prepartum nutritional level of the calf cow has been related to lower productivity in the progeny through the fetal programming mechanism. The excess of protein in late pregnancy on this mechanism is still little studied. This situation can be observed in systems that produce genetic material. The objective of the work was to evaluate the effect of a pastoral diet with a high protein level, during the last third of gestation, on the growth of the progeny. 16 pregnant multiparous Aberdeen Angus females fed with different protein levels during the last third of gestation were used: one on degraded pasture (PB 13.92% and Dig 65.5%) and the other on triticale (PB 18.2% and Dig 68 , 7%). The CP contributions were 10% and 59% higher than the daily requirements, respectively. A completely randomized experimental design with two replications was used and 8 animals were randomized to each treatment. Weight at birth, weight at 205 days, daily pre-weaning weight gain and weight at one year were evaluated. Higher protein intakes negatively affected growth potential (p <0.05), without affecting birth weight. The high levels of CP, being mainly degradable protein in the rumen, could generate a greater metabolic demand on the pregnant cow due to the effect of excessive uregenesis, which competes with other metabolic processes for metabolic energy and different metabolites, including methionine, an amino acid associated with fetal programming mechanism.
Downloads
References
Arelovich, H. M., R. D. Bravo, and M. F. Martínez. 2011. Development, characteristics, and trends for beef cattle production in Argentina. Animal frontiers, 1(2), 37-45. https://doi.org/10.2527/af.2011-0021
Bach, A. 2004. La reproducción del vacuno lechero: Nutrición y fisiología. XVII Curso de Especialización FEDNA. Purina España. http://www.etsia.upm.es/fedna/capitulos/2001CAPV.pdf
Barker, D. J. P. 2004. Developmental origins of well being. Philos. Trans. Royal Soc. London 359:1359- 1366. https://doi.org/10.1098/rstb.2004.1518
Barker, D. J. P. Editor. 1992. Fetal and Infant Origins of Adult Disease. BMJ Publishing Group, London. https://doi.org/10.1136/bmj.301.6761.1111
Bohnert, D. W., T. Del Curto, A. A. Clark, M. L. Merrill, M. L., S. J. Falck and D. L. Harmon. 2011. Protein supplementation of ruminants consuming low-quality cool- or warm-season forage: Differences in intake and digestibility. J. Anim. Sci. 89: 3707-3717. https://doi.org/10.2527/jas.2011-3915
Canosa F. 2003. Evolución, potencial y limitantes de la cría en la Argentina. Cuaderno de Actualización Técnica en Cría Vacuna. CREA.
Caton, J. S., M. S. Crouse, L. P. Reynolds, T. L. Neville, C. R. Dahlen, A. K. Ward, and K. C. Swanson. 2018. Maternal nutrition and programming of offspring energy requirements, Translational Animal Science, Volume 3, Issue 3, Pages 976–990, https://doi.org/10.1093/tas/txy127
Cooney C.A., A. A. Dave, and G. L. Wolff. 2002 Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr; 132: 2393S-2400S. https://doi.org/10.1093/jn/132.8.2393s
Correa, H.J., y A.E. Cuellar. 2004. Aspectos claves del ciclo de la urea con relación al metabolismo energético y proteico en vacas lactantes. Revista Colombiana de Ciencias Pecuarias 17(1): 29-38. https://revistas.udea.edu.co/index.php/rccp/article/view/323921
Currier, T.A., D. W. Bohnert, S. J. Falck, and Bartle. 2004. Influence of energy supplementation on grazing ruminants: requirements and responses. J. Anim. Sci. 82:1508-1517. https://doi.org/10.2527/2004.8251508x
Deiros, J., L.A. Quintela, A.I. Peña, J.J. Becerra, M. Barrio, G. Alonso, 2004. Urea plasmática relación con el equilibrio energético y parámetros reproductivos en vacunos lecheros. Arch. Zootec. 53:141-151
Dimitri, M. J.; Leonardis, R. F. y J. Santos Biloni. 1999. El nuevo libro del árbol. Tomo I. Especies Forestales de la Argentina Occidental. 1º Edición. Buenos Aires. El Ateneo. ISBN: 950-02-8467-7. 120 p.
Dimitri, M. J.; Leonardis, R. F. y J. Santos Biloni. 2000. El nuevo libro del árbol. Tomo II. Especies Forestales de la Argentina Oriental. 3º Edición. Buenos Aires. El Ateneo. ISBN: 950-02-8474-X. 124 p
Du, M., J. Tong, J. Zhao, K. R. Underwood, M. Zhu, S. P. Ford, and P. W. Nathanielsz. 2010. Fetal Programming of Skeletal Muscle Development in Ruminant Animals. J. Anim. Sci 88(13): 51-60. https://doi.org/10.2527/jas.2009-2311
Du, M., S. P. Ford, and M. J. Zhu. 2017. Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming. Anim. Front. 7:5-11. https://doi.org/10.2527/af.2017-0122
Du, M., X. Yan, F. Tong, J. Zhao and M. Zhu. 2010. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol. Reprod. 82: 4-12. https://doi.org/10.1095/biolreprod.109.077099
Faverin, C., y C. Machado. 2019. Tipologías y caracterización de sistemas de cría bovina de la Pampa Deprimida. Chilean journal of Agricultural & Animal Sciences, 35(1), 3-13. https://revistas.udec.cl/index.php/chjaas/article/view/984/1674
Ferguson J. and W. Chalupa. 1989. Impact of protein nutrition on reproduccion in dairy cows. J. Dairy Sci. 72(3):746-66. https://doi.org/10.3168/jds.s0022-0302(89)79168-2
Funston, R., J. Martin, D. Adams, and D. Larson. 2010. Winter grazing system and supplementation of beef cows during late gestation influence heifer progeny. J. Anim. Sci. 88:4094-4101. https://doi.org/10.2527/jas.2010-3039
Gicquel, C., A. El-Osta, and Y. Le Bouc. 2008. Epigenetic regulation and fetal programming. Best. Pract. Res. Clin. Endocrinol. Metab. 22:1–16. https://doi.org/10.1016/j.beem.2007.07.009
Greenwood, P., E. Clayton, and A. Bell. 2017. Developmental programming and beef production Anim. Front. 7:38-47. https://doi.org/10.2527/af.2017-0127
Hall M. B; Huntington., G. B., 2008, Nutrient synchrony: Sound in theory, elusive in practice, Journal of Animal Science, Volume 86, Issue suppl_14, Pages E287–E292, https://doi.org/10.2527/jas.2007-0516
Hare, K.S., K. M. Wood, K. Acton, C. Fitzsimmons and G. B. Penner. 2018 Oversupplying metabolizable protein in late gestation for beef cattle: effects on prepartum BW, ruminal fermentation, nitrogen balance, and skeletal muscle catabolism. J. Anim.Sci 97:407-423. https://dx.doi.org/10.1093%2Fjas%2Fsky410
Hersom M. J., 2008 Opportunities to enhance performance and efficiency through nutrient synchrony in forage-fed ruminants, Journal of Animal Science, Volume 86, Issue suppl_14, April, Pages E306–E317, https://doi.org/10.2527/jas.2007-0463
Hibbitt, K.G. 1984, Effect of protein on the health of dairy cows.,Recent advances in animal nutrition. Butterworth & Co. Publ., London W. Haresign, D.J.A. Cole (Eds.), UK, pp. 189-200. https://doi.org/10.1016/B978-0-407-01160-1.50016-6
Jacometo, C, B., Z. Zhou, D. Luchini, E. Trevesi, M. N. Correa and J. J. Loor. 2016. Maternal rumen-protected methionine supplementation and its effect on blood and liver biomarkers of energy metabolism, inflamation, and oxidative stress in neonatal Holstein calves. J. Dairy Sci., 99, 6753-6763. https://doi.org/10.3168/jds.2016-11018
Lan, X., E. C. Cretney, J. Kropp, K. Khateeb, M. A. Berg, F. Peñagaricano, R. Magness, A. E. Radunz, and H. Khatib. 2013. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep. Front Genet.;4:49. https://doi.org/10.3389/fgene.2013.00049
Larson, D. M., J. L. Martin, D. C. Adams, and R. N. Funston. 2009. Winter grazing system and supplementation during late gestation influence performance of beef cows and steer progeny. J. Anim.Sci. 87(3):1147-1155. https://doi.org/10.2527/jas.2008-1323
Martin, J. L., K. A. Vonnahme, D.C. Adams, G.P. Lardy, and R.N. Funston. 2007. Effect of dam nutrition on growth and reproductive performance of heifer calves. J. Anim. Sci. 85:841–847. https://doi.org/10.2527/jas.2006-337
McEvoy T. G., J. J. Robinson, P. A. Findley, R. P. Aitken and I. S. Robertson. 1997. Dietary excesses of urea influence the viability and metabolism of preimplantation sheep embryos and may affect fetal growth among survivors. Anim Reprod. 47(1-2):71-90 https://doi.org/10.1016/s0378-4320(96)01627-2
Moralejo R. 2004 Alimentación y condición corporal de la vaca de cría en la zona semiárida Conferencia. Revista Angus, Bs. As. http://www.produccion-animal.com.ar/informacion_tecnica/cria_condicion_corporal/68-cc_y_alimentacion.pdf
Morgan HD, Sutherland HG, Martin DI,Whitelaw E. 1999 Epigenetic inheritance at the agouti locus in the mouse. Nat Genet; 23: 314-318. https://doi.org/10.1038/15490
Nathanielsz, P.W., L. Poston, P. D. Taylor. 2007. In utero exposure to maternal obesity and diabetes: Animals models that identify and characterize implications for future health. Clinics Perinatology 34: 515-526. https://doi.org/10.1016/j.clp.2007.09.005
Noro, M. y F. Wittwer. 2017. Hemoglobinuria posparto en vacas de tres rebaños lecheros de la región del Bío-Bío, Chile. Revista MVZ Córdoba. 16 (3): 2785-2792. https://doi.org/10.21897/rmvz.279
NRC 2000. Nutrient Requirements of Beef Cattle. National Academy Press, (Washington D.C).
R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org.
Radunz, A. E. 2009. Effects of prepartum dam energy source on progeny growth, glucose tolerance, and carcass composition in beef and sheep. PhD Diss. The Ohio State. Univ., Columbus.
Radunz, A. E., F. L. Fluharty, M. L. Day, H. N. Zerby, and S. C. Loerch. 2010. Prepartum dietary energy source fed to beef cows: I. Effects on pre- and postpartum cow performance. J. Anim. Sci. 88:2717-2728. https://doi.org/10.2527/jas.2009-2744
Radunz, A. E., F. L. Fluharty, A. E. Relling, T. L. Felix, L. M. Shoup, H. N. Zerby, and S. C. Loerch. 2012. Prepartum dietary energy source fed to beef cows: II. Effects on progeny postnatal growth, glucose tolerance, and carcass composition. J. Anim. Sci. 90:4962–4974. https://doi.org/10.2527/jas.2012-5098
Reed, S. A., and K. E. Govoni. 2017. How mom’s diet affects offspring growth and health through modified stem cell function. Anim. Front. 7(3):25–31. https://doi.org/10.2527/af.2017-0125
Reynolds, L. P., and J. S. Caton. 2012. Role of the pre-and post-natal environment in developmental programming of health and productivity. Molecular and Cellular Endocrinology, 1(354), 54-59. https://doi.org/10.1016/j.mce.2011.11.013
Scheffler, J., M. McCann, S. Greiner, H. Jiang, M. Hanigan, G. Bridges, S. Lake, and D. Gerrard. 2014. Early metabolic imprinting events increase marbling scores in fed cattle. J Anim Sci., 92(1):320-324. https://doi.org/10.2527/jas.2012-6209
Sinclair, K. D., C. Allegrucci, R. Singh, D. S. Gardner, S. Sebastian, J. Bispham, A. Thurston, J. F. Huntley, W. D. Rees, C. A. Maloney, R. G. Lea, J. Craigon, T. G. McEvoy, L. E. Young. 2007. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proceedings of the National Academy of Sciences, 104(49), 19351-19356. https://doi.org/10.1073/pnas.0707258104
Summers A. F. and R. N. Funston. 2012. Fetal programming: implications for beef cattle production Beef Improvement Federation's Annual Meeting and Research Symposium. http://www.bifconference.com/bif2012/proceedings-pdf/07funston.pdf
Summers, A. F., K. H. Ramsay, and R. N. Funston. 2011. The effects of maternal nutrition on steer progeny performance. Prof. Anim. Sci. 27:251-256. https://core.ac.uk/download/pdf/188105928.pdf
Underwood, K., J. Tong, P. Price, A. Roberts, E. Grings, B. Hess, W. Means, and M. Du. 2010.Nutrition during mid to late gestation affects growth, adipose tissue deposition, and tenderness in cross-bred beef steers. Meat Sci. 86. 588-593. https://doi.org/10.1016/j.meatsci.2010.04.008
Waterland, R. A. 2006. Assessing the effects of high methionine intake on DNA methylation. J. Nutr., 136(6), 1706S-1710S. https://doi.org/10.1093/jn/136.6.1706s
Wilson, T. B., A. R. Schroeder, F. A. Ireland, D. B. Faulkner, and D.W. Shike. 2015. Effects of late gestation distillers grains supplimentatios on fall-calving beef cow performance and steer calf growth and carcass characteristics. J. Anim. Sci. 93(10):4843-4851. https://doi.org/10.2527/jas.2015-9228
Zago, D., M. E. Canozzi, and J. O. Barcellos. 2019. Pregnant cow nutrition and its effects on foetal weight–a meta-analysis. The Journal of Agricultural Science, 157(1): 83-95. https://doi.org/10.1017/S0021859619000315
Zago, D., M. E. Canozzi, and J. O. Barcellos. 2020. Pregnant beef cow’s nutrition and its effects on postnatal weight and carcass quality of their progeny. Plos one, 15(8), e0237941. https://doi.org/10.1371/journal.pone.0237941
Copyright (c) 2020 Laura Macor, O. A. Bocco, J. Giovini, M. Cuchieti, M. V. Coniglio, M. E. Ortiz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.