
215
Literature Cited
Achour, B., Belkadi, M., Aoudjit, R., Laghrouche, M.,
Lalam, M., & Daoui, M. (2022). Classification of dairy
cows’ behavior by energyefficient sensor. Journal of
Reliable Intelligent Environments, 8(2), 165–182.
https://doi.org/10.1007/s40860021001443
Gao, R., Liu, Q., Li, Q., Ji, J., Bai, Q., Zhao, K., & Yang,
L. (2023). Multitarget rumination behavior analysis
method of cows based on target detection and optical
flow algorithm. Sustainability (Switzerland), 15(18).
https://doi.org/10.3390/su151814015
Alonso, R. S., SittónCandanedo, I., García, Ó., Prieto,
J., & RodríguezGonzález, S. (2020). An intelligent
edgeIoT platform for monitoring livestock and crops
in a dairy farming scenario. Ad Hoc Networks, 98,
102047. https://doi.org/10.1016/j.adhoc.2019.102047
BarcoJiménez, J., Martínez, M., & Solarte, A. L. (2021).
Sistema de pesaje automatizado que facilita el
manejo de cuyes (Cavia porcellus). Archivos de
Zootecnia, 70(269), 112–116. https://doi.org/
10.21071/az.v70i269.5425
Castro, H. (2002). Sistemas de crianza de cuyes a nivel
familiarcomercial en el sector rural. Benson
Agriculture and Food Institute.
Chung, H., Li, J., Kim, Y., Van Os, J. M. C., Brounts, S.
H., & Choi, C. Y. (2020). Using implantable biosensors
and wearable scanners to monitor dairy cattle’s core
body temperature in real time. Computers and
Electronics in Agriculture, 174, 105453. https://
doi.org/10.1016/j.compag.2020.105453
Cotticelli, A., Verde, M. T., Liccardo, A., De Alteriis, G.,
Lamonaca, F., Matera, R., Neglia, G., Peric, T., Prandi,
A., & Bonavolontà, F. (2023). On the use of 3D camera
to accurately measure volume and weight of dairy
cow feed. Acta IMEKO, 12(4), 1–6. https://doi.org/
10.21014/actaimeko.v12i4.1633
Dineva, K., & Atanasova, T. (2023). Health status
classification for cows using machine learning and
data management on AWS Cloud. Animals, 13(20),
3254. https://doi.org/10.3390/ani13203254
Dos Reis, B. R., Easton, Z., White, R. R., & Fuka, D.
(2021). A LoRa sensor network for monitoring
pastured livestock location and activity.
Translational Animal Science, 5(2), 1–9. https://
doi.org/10.1093/tas/txab010
Dutta, D., Natta, D., Mandal, S., & Ghosh, N. (2022).
MOOnitor: An IoTbased multisensory intelligent
device for cattle activity monitoring. Sensors and
Actuators A: Physical, 333, 113271. https://doi.org/
10.1016/j.sna.2021.113271
Echegaray, N., Hassoun, A., Jagtap, S., TettehCaesar,
M., Kumar, M., Tomasevic, I., Goksen, G., &
Lorenzo, J. M. (2022). Meat 4.0: Principles and
applications of Industry 4.0 technologies in the
meat industry. Applied Sciences, 12(14), 6986.
https://doi.org/10.3390/app12146986
Gong, B., Dai, K, Shao, J., Jing, L., & Chen, Y. (2023).
FishTViT: A novel fish species classification method
in multiwater areas based on transfer learning and
vision transformer. Heliyon, 9(6), e16761. https://
doi.org/10.1016/j.heliyon.2023.e16761
Guerra León, C. (2009). Manual técnico de crianza de
cuyes. CEDEPAS Norte.
Hansen, M. F., Oparaeke, A., Gallagher, R., Karimi, A.,
Tariq, F., & Smith, M. L. (2022). Towards machine
vision for insect welfare monitoring and behavioural
insights. Frontiers in Veterinary Science, 9, 1–7.
https://doi.org/10.3389/fvets.2022.835529
Luo, H., Cheng, S., Jiang, Z., Hou, W., & Wang, Z.
(2021). Economical Bluetooth Low Energybased
telemetry system with combined data processing
method for longterm laboratory animal monitoring
for biological rhythm research. Chronobiology
International, 38(3), 451–465. https://doi.org/
10.1080/07420528.2020.1868489
Ramos, I. (2014). Crianza, producción y
comercialización de cuyes (1st ed.). MACRO.
Jebari, H., Hayani Mechkouri, M., Rekiek, S., &
Reklaoui, K. (2023). PoultryEdgeAIIoT system for
realtime monitoring and predicting by using
artificial intelligence. International Journal of
Interactive Mobile Technologies, 17(12), 149–170.
https://doi.org/10.3991/ijim.v17i12.38095
Kitchenham, B., Brereton, O. P., Budgen, D., Turner,
M., Bailey, J., & Linkman, S. (2009). Systematic
literature reviews in software engineering: A
systematic literature review. Information and
Software Technology, 51(1), 7–15. https://doi.org/
10.1016/j.infsof.2008.09.009
Li, S., Fu, L., Sun, Y., Mu, Y., Chen, L., Li, J., & Gong,
H. (2021). Individual dairy cow identification based
on lightweight convolutional neural network.
PLOS ONE, 16(11), 1–14. https://doi.org/10.1371/
journal.pone.0260510
Liu, X., Wang, Z., Li, J., Cangelosi, A., & Yang, C.
(2023). Demonstration learning and generalization
of robotic motor skills based on wearable motion
tracking sensors. IEEE Transactions on
Instrumentation and Measurement, 72, 1–15.
https://doi.org/10.1109/TIM.2023.3288240
MateoFornés, J., PagèsBernaus, A., PlàAragonés, L.
M., CastellsGasia, J. P., & BabotGaspa, D. (2021).
An Internet of Things platform based on
Noninvasive monitoring in guinea pig production
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2025. 33 (4): 199 216