Estimation of the temperature-humidity index (TIH) for bovine production systems in Morona Santiago, preliminary result.

  • Carlos D. Congo Estación Experimental Central de la Amazonía, Instituto Nacional de Investigaciones Agropecuarias
  • Edgar J. Chuquimarca Estación Experimental Central de la Amazonía, Instituto Nacional de Investigaciones Agropecuarias
  • Néstor F. Torres Estación Experimental Central de la Amazonía, Instituto Nacional de Investigaciones Agropecuarias
  • Nelly G. Quezada Estación Experimental del Austro, Instituto Nacional de Investigaciones Agropecuarias
  • Juan P. Garzón Facultad de Ciencias Agropecuarias, Universidad de Cuenca https://orcid.org/0000-0002-9637-2751
Keywords: Heat stress, welfare, southern Ecuadorian Amazon, animal health

Abstract

The objective of the study was to characterize the climatic conditions during the period of highest rainfall in the southern Amazon of Ecuador (March to July 2024), using the temperature and humidity index (ITH). The data were collected using a datalogger (SensorPush) and systematized in the GANADERO TP® software. In total, 218,915 temperature and humidity records were analyzed and downloaded in Microsoft Excel compatible format. The analysis was performed by applying descriptive statistics and the thresholds pre-established by the National Institute of Agricultural Research of Uruguay to determine the risk of heat stress. Alert states were considered for dairy systems with an ITH between 68 and 71.9, and for beef systems between 69 and 74.9. No heat waves were detected in the period studied; however, a cumulative effect was observed with an ITH ≥72, which implies alertness and danger in meat and milk production, potentially affecting animal health, welfare and reproduction. These preliminary results are fundamental for the development of a low-cost predictive tool to help mitigate the effects of heat stress in livestock systems in the region. It is crucial to continue climate characterization studies in the southern Ecuadorian Amazon to create solutions that allow producers and advisors to make informed decisions and implement strategies that reduce the adverse impacts of heat.

Downloads

Download data is not yet available.

References

Aguirre-Riofrio, E.L., Lozano-Lozano, R.F., Uchuari-Pauta, M. de L., 2020. El manejo “al sogueo” en bovinos, un sistema que va desapareciendo en la Amazonia Sur del Ecuador. Revista del Colegio de Médicos Veterinarios del Estado Lara, 10(19):1. https://dialnet.unirioja.es/servlet/articulo?codigo=8118331
Brown-Brandl, T.M., Jones, D.D., 2016. Characterizing Feedlot Heifer Response to Environmental Temperature. Transactions of the ASABE, 59(2):673-80. https://doi.org/10.13031/trans.59.10855
Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, Kumar, R., 2016. Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9(3):260-68. https://doi.org/10.14202/vetworld.2016.260-268
Farfán, F.P., 2018. Agroclimatología del Ecuador. Editorial Abya-Yala.
Gastaldi, L.B., 2023. Estimación del riesgo de estrés calórico bovino mediante el índice de temperatura y humedad en localidades de Argentina [informe técnico, INTA Diigital]. EEA Rafaela, INTA. https://repositorio.inta.gob.ar/handle/20.500.12123/14585
Instituto Nacional de Investigaciones Agropecuarias de Uruguay [INIA]., 2023. Portal INIA Termoestrés. http://www.inia.uy/gras/Alertas-y-herramientas/Prevision-ITH-Vacunos/INIA-Termoestres
Instituto Nacional de Meteorología e Hidrología, [INAMHI]., 2017. Anuario meteorológico No53-2013, estación de meteorología M0140. https://www.inamhi.gob.ec/docum_institucion/anuarios/meteorologicos/Am_2013.pdf
Lees, A.M., Sejian, V., Wallage, A.L., Steel, C.C., Mader, T.L., Lees, J.C., Gaughan, J.B., 2019. The impact of heat load on cattle. Animals, 9(6):322. https://doi.org/10.3390/ani9060322
Manna, A.L., Román, L., Bravo, R., Aguilar, I., 2014. Estrés térmico en vacas lecheras: Con sombra y bienestar las vacas producen más. Revista INIA, 39:34-9. https://www.alcico.com.uy/wp-content/uploads/2018/01/Estr%C3%A9s-Termico-en-Vacas-Lecheras.-Revista-INIA-39-p.-34-39.pdf
North, M.A., Franke, J.A., Ouweneel, B., Trisos, C.H., 2023. Global risk of heat stress to cattle from climate change. Environmental Research Letters, 18(9): 094027. https://doi.org/10.1088/1748-9326/aceb79
Ríos, S., Benítez, D., 2015. Análisis del funcionamiento económico productivo de los sistemas de producción cárnica bovina en la Amazonía Ecuatoriana. Archivos de Zootecnia, 64(248):409-16. https://doi.org/10.21071/az.v64i248.428
Rojas-Downing, M.M., Nejadhashemi, A.P., Harrigan, T., Woznicki, S.A., 2017. Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16:145-63. https://doi.org/10.1016/j.crm.2017.02.001
Sejian, V., Bhatta, R., Gaughan, J. B., Dunshea, F. R., Lacetera, N., 2018. Review: Adaptation of animals to heat stress. Animal, 12(Suppl. 2):s431-s444. https://doi.org/10.1017/S1751731118001945
Shephard, R., Maloney, S., 2023. A review of thermal stress in cattle. Australian Veterinary Journal, 101(11):417-29. https://doi.org/10.1111/avj.13275
Thom, E.C., 1959. The Discomfort Index. Weatherwise. https://www.tandfonline.com/doi/abs/10.1080/00431672.1959.9926960
Zimbelman, R., Rhoads, R., Rhoads, M., Duff, G., Baumgard, L., Collier, R., 2009. A Re-evaluation of the Impact of Temperature Humidity Index (THI) and Black Globe Humidity Index (BGHI) on Milk Production in High Producing Dairy Cows. Proc 24th Annual Southwest Nutrition and Management Conference.
Published
2024-10-13
How to Cite
Congo, Carlos D., Edgar J. Chuquimarca, Néstor F. Torres, Nelly G. Quezada, and Juan P. Garzón. 2024. “Estimation of the Temperature-Humidity Index (TIH) for Bovine Production Systems in Morona Santiago, Preliminary Result.”. Archivos Latinoamericanos De Producción Animal 32 (Supl 1), 131-35. https://doi.org/10.53588/alpa.320514.