Consumption of expanded polystyrene by Tenebrio molitor and Zophobas atratus, and use of their meal as feed for Piaractus brachypomus

  • Miguel F. Bonilla-Amaya Universidad Nacional de Colombia
  • Adriana P. Muñoz-Ramírez Universidad Nacional de Colombia
  • Fredy A. Aguilar-Aguilar Fundación Universitaria Agraria de Colombia
  • Karol Bibiana Barragán-Fonseca Universidad Nacional de Colombia
Keywords: circular economy, kingworm, mealworm, plastics

Abstract

Expanded polystyrene (PS) provides a great challenge for environmental management due to its high levels of production and insufficient waste management. However, recent studies have demonstrated the capacity of Tenebrio molitor and Zophobas atratus to biodegrade PS, as well as the possibility of using the meal of these species to feed fish. The objective of this study was to evaluate the productive performance of the larvae of T. molitor and Z. atratus fed with varying levels of PS and evaluate the effect of the level of inclusion of the meal of these insects as a substitute for fish meal in the diet of Piaractus brachypomus fingerlings. In one experiment, the effect of 5 different levels of PS and wheat bran (WB) was evaluated (100% PS:0% WB, 75% PS:25% WB, 50% PS:50% WB, 25% PS:75% WB, and 0% PS:100% WB) on growth and composition of T. molitor and Z. atratus larvae. In a second experiment, 10 different diets for Piaractus brachypomus fingerlings were evaluated involving five levels (100, 75, 50, 25, and 0%) of substitution of the fish meal of a conventional dietary formulation with meal of T. molitor or Z. atratus previously fed with PS. In the first experiment, the best treatment for both species was 25% PS:75% WB, resulting in the highest growth rate and consumption of PS. In the second experiment, no significant differences were found among treatments for any of the variables evaluated for productive performance for the fish. We conclude that up to 100% of the fish meal in the diet of Piaractus brachypomus fingerlings may be replaced with meal of T. molitor or Z. atratus fed with PS, although there is a need for further studies regarding the long term health effects on the fish and the humans that consume them.

Downloads

Download data is not yet available.

References

Abdel, M., Ahmad, M.H., Khattab, Y.A.E. and Shalaby, A.M.E. 2010. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture, 298: 267–274. https://doi.org/10.1016/j.aquaculture.2009.10.027

Amza, Nazif & Tamiru, Metekia. (2021). Insects as an Option to Conventional Protein Sources in Animal Feed: A Review Paper Global Journal of Science Frontier Research: D Agriculture and Veterinary Insects as an Option to Conventional Protein Sources in Animal Feed: A Review Paper.

Arévalo Arévalo, H.A., Menjura Rojas, E.M., Barragán Fonseca, K.B. and Vásquez Mejía, S.M. 2022. Implementation of the HACCP system for production of Tenebrio molitor larvae meal. Food Control 138: 109030. https://doi.org/10.1016/j.foodcont.2022.109030

Azagoh, C., Ducept, F., Garcia, R., Rakotozafy, L., Cuvelier, M.E., Keller, S., Lewandowski, R. and Mezdour, S. 2016. Extraction and physicochemical characterization of Tenebrio molitor proteins. Food Research International 88: 24-31. https://doi.org/10.1016/j.foodres.2016.06.010

Barragán-Fonseca, K.B., Muñoz-Ramírez, A.P., Mc Cune, N.M., Pineda, J., Dicke, M. and Cortés, J. 2022. Fighting rural poverty in Colombia: Circular agriculture by using insects as feed in aquaculture. Report No. 1353. Wageningen Livestock Research. https://doi.org/10.18174/561878

Barragán-Fonseca, K.Y., Barragán-Fonseca, K.B., Verschoor, G., van Loon, J.J. and Dicke, M. 2020. Insects for peace. Current Opinion in Insect Science 40: 5-93. https://doi.org/10.1016/j.cois.2020.05.011

Basto, A., Matos, E. and Valente, L.M.P. 2020. Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 521: 735085. https://doi.org/10.1016/j.aquaculture.2020.735085

Benzertiha, A., Kierończyk, B., Rawski, M., Józefiak, A., Kozłowski, K., Jankowski, J. and Józefiak, D. 2019. Tenebrio molitor and Zophobas morio full-fat meals in broiler chicken diets: Effects on nutrients digestibility, digestive enzyme activities, and cecal microbiome. Animals 9: 12. https://doi.org/10.3390/ani9121128

Biasato, I., Gasco, L., De Marco, M., Renna, M., Rotolo, L., Dabbou, S., Capucchio, M.T., Biasibetti, E., Tarantola, M., Sterpone, L., Cavallarin, L., Gai, F., Pozzo, L., Bergagna, S., Dezzutto, D., Zoccarato, I. and Schiavone, A. 2018. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poultry Science 97(2): 40-48. https://doi.org/10.3382/ps/pex308

Bosch, G., Vervoort, J.J.M. and Hendriks, W.H. 2016. In vitro digestibility and fermentability of selected insects for dog foods. Animal Feed Science and Technology 221: 174-184. https://doi.org/10.1016/j.anifeedsci.2016.08.018

Brandon, A.M., Gao, S.H., Tian, R., Ning, D., Yang, S.S., Zhou, J., Wu, W.M. and Criddle, C.S. 2018. Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science and Technology 52(11): 6526-6533. https://doi.org/10.1021/acs.est.8b02301

Chainark, P., Prachom, N., Boonyoung, S. and Yuangsoi, B. 2022. Replacement of Fish Meal Protein with Giant Worm (Zophobas morio) and Black Cricket (Gryllus bimaculatus) in Diet of Cobia (Rachycentron canadum). Jurnal of Fisheries and Environment 46 (1): 122-129. Retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/254224

Chirinos, N., Díaz-Viteri, J. and Mego-Mego, V. 2022. Efecto de dietas extruidas en base a torta de castaña y fruto de macambo, sobre los índices de crecimiento y zootécnicos en el cultivo de pacos juveniles. Ariotake – Revista de Investigación Veterinaria y Amazonía 1(1): e176. https://doi.org/10.55873/ariva.v1i1.176

Coffey, D., Dawson, K., Ferket, P. and Connolly, A. 2016. Review of the feed industry from a historical perspective and implications for its future. Journal of Applied Animal Nutrition 4: e3. https://doi.org/10.1017/jan.2015.11

Couto, F., Tavares, F., Calvacante, E.F., da Costa, D.V., Silva, A.C. and Cardoso, S.P. 2021. Uso de farinha de inseto como alimento alternativo na dieta de alevinos de pirapitinga (Piaractus brachypomus). Revista Panorâmica Online 2: 38-49. Retrieved from https://scholar.google.com/scholar?hl=es&as_sdt=0%2C5&q=Uso+de+farinha+de+inseto+como+alimento+alternativo+na+dieta+de+alevinos+de+pirapitinga+%28Piaractus+brachypomus%29.+&btnG=

Craig, S.R., Washburn, B.S. and Gatlin, D.M. 1999. Effects of dietary lipids on body composition and liver function in juvenile red drum, Sciaenops ocellatus. Fish Physiology and Biochemistry 21: 249-255. https://doi.org/10.1023/a:1007843420128

De Marco, M., Martínez, S., Hernandez, F., Madrid, J., Gai, F., Rotolo, L., Belforti, M., Bergero, D., Katz, H., Dabbou, S., Kovitvadhi, A., Zoccarato, I., Gasco, L. and Schiavone, A. 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science and Technology 209: 211-218. https://doi.org/10.1016/j.anifeedsci.2015.08.006

Derraik, B. 2002. The pollution of the marine environment by plastic debris: a review. Marine pollution bulletin 4(9): 842-852. https://doi.org/10.1016/S0025-326X(02)00220-5

Doğankaya, L. 2016. Effects of fish meal substitution with super worm (Zophobas morio) meal on growth performance of rainbow trout fingerlings. Aquatic Sciences and Engineering. Turkish Journal of Aquatic Sciences 32(1): 1-71. https://doi.org/10.18864/tjas201701

Fabrikov, D., Sánchez-Muros, M.J., Barroso, F.G., Tomás-Almenar, C., Melenchón, F., Hidalgo, M.C., Morales, A.E., Rodriguez-Rodriguez, M. and Montes-Lopez, J. 2020. Comparative study of growth performance and amino acid catabolism in Oncorhynchus mykiss, Tinca tinca and Sparus aurata and the catabolic changes in response to insect meal inclusion in the diet. Aquaculture 579: 735731. https://doi.org/10.1016/j.aquaculture.2020.735731

Fontes, T., de Oliveira, K.R.B., Almeida, I.L.G., Orlando, T.M., Rodrigues, P.B., da Costa, D.V. and Rosa, P.V. 2019. Digestibility of insect meals for nile tilapia fingerlings. Animals 9(4): 181. https://doi.org/10.3390/ani9040181

Fontes, T.V. 2018. Coeficiente de digestibilidade de farinha de insetos na alimentação de alevinos de tilápia do nilo (Oreochromis niloticus). Universidade Federal de Lavras. Retrieved from https://pesquisa.bvsalud.org/portal/resource/pt/vtt-217451

Gao, W., Liu, Y.J., Tian, L.X., Mai, K.S., Liang, G.Y., Yang, H.J., Huai, M.Y. and Luo, W.J. 2011. Protein-sparing capability of dietary lipid in herbivorous and omnivorous freshwater finfish: A comparative case study on grass carp (Ctenopharyngodon idella) and tilapia (Oreochromis niloticus × O. aureus). Aquaculture Nutrition 7(1): 2-12. https://doi.org/10.1111/j.1365-2095.2009.00698.x

Gasco, L., Biancarosa, I. and Liland, N.S. 2020. From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Current Opinion in Green and Sustainable Chemistry 23: 67-79. https://doi.org/10.1016/j.cogsc.2020.03.003

Gasco, L., Biasato, I., Dabbou, S., Schiavone, A. and Gai, F. 2019. Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. Animals 9(4): 170. https://doi.org/10.3390/ani9040170

Gasco, L., Henry, M., Piccolo, G., Marono, S., Gai, F., Renna, M., Lussiana, C., Antonopoulou, E., Mola, P. and Chatzifotis, S. 2016. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science and Technology 220: 34-45. https://doi.org/10.1016/j.anifeedsci.2016.07.003

Gibson, C. M. and Hunter, M. S. 2010. Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecology Letters 13(2): 223-234. https://doi.org/10.1111/j.1461-0248.2009.01416.x

Gümüş, E. and İkiz, R. 2009. Effect of dietary levels of lipid and carbohydrate on growth performance, chemical contents and digestibility in rainbow trout, Oncorhynchus mykiss. Pakistan Veterinary Journal 29(2): 59-63. Retrieved from http://www.pvj.com.pk/pdf-files/29_2/59-63.pdf

Gutiérrez, J. 2013. Biodegradación de polietileno de baja densidad por consorcios microbianos. Universidad Nacional Autónoma de Mexico.

Henry, M. A., Gasco, L., Chatzifotis, S. and Piccolo, G. 2018. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Developmental and Comparative Immunology 81: 204-209. https://doi.org/10.1016/j.dci.2017.12.002

Henry, M., Gasco, L., Piccolo, G. and Fountoulaki, E. 2015. Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology 203 (1): 1-22. https://doi.org/10.1016/j.anifeedsci.2015.03.001

Iaconisi, V., Bonelli, A., Pupino, R., Gai, F. and Parisi, G. 2018. Mealworm as dietary protein source for rainbow trout: Body and fillet quality traits. Aquaculture 484: 197-204. https://doi.org/10.1016/j.aquaculture.2017.11.034

Iaconisi, V., Marono, S., Parisi, G., Gasco, L., Genovese, L., Maricchiolo, G., Bovera, F. and Piccolo, G. 2017. Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture 476: 49-58. https://doi.org/10.1016/j.aquaculture.2017.04.007

Imathiu, S. 2020. Benefits and food safety concerns associated with consumption of edible insects. NFS Journal 18:1-11. https://doi.org/10.1016/j.nfs.2019.11.002

Jabir, R., Razak, S. and Vikinesway, S. 2012. Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile. African Journal of Biotechnology11(24): 6592-6598h. ttps://doi.org/10.5897/ajb11.1084

Jeong, S.M., Khosravi, S., Mauliasari, I.R. and Lee, S.M. 2020. Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for rainbow trout (Oncorhynchus mykiss) fry. Fisheries and Aquatic Sciences 23(1): 1-8 https://doi.org/10.1186/s41240-020-00158-7

Jordan, R. 2015. Plastic-eating worms may offer solution to mounting waste, Stanford researchers discover. Retrieved from https://news.stanford.edu/2015/09/29/worms-digest-plastics-092915/

Khan, M. A., Guttormsen, A., & Roll, K. H. (2018). Production risk of pangas (Pangasius hypophthalmus) fish farming. Aquaculture Economics & Management, 22(2), 192–208.

Khan, S., Dong, Y., Nadir, S., Schaefer, D.A., Mortimer, P.E., Xu, J., Ye, L., Gui, H., Wanasinghe, D.N., Dossa, G.G.O., Yu, M. and Sheng, J. 2021. Valorizing plastic waste by insect consumption. Circular Agricultural Systems 1(1):1-9. https://doi.org/10.48130/CAS-2021-0007

Kooijman, B. 2009. Dynamic Energy Budget Theory for Metabolic Organisation. Cambridge University Press. https://doi.org/10.1017/CBO9780511805400

Kovitvadhi, A., Chundang, P., Thongprajukaew, K., Tirawattanawanich, C., Srikachar, S. and Chotimanothum, B. 2019. Potential of insect meals as protein sources for meat-type ducks based on in vitro digestibility. Animals 9(4): 155. https://doi.org/10.3390/ani9040155

Kulma, M., Kouřimská, L., Homolková, D., Božik, M., Plachý, V. and Vrabec, V. 2020. Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. Journal of Food Composition and Analysis 92: 103570. https://doi.org/10.1016/j.jfca.2020.103570

Kyrikou, I. and Briassoulis, D. 2007. Biodegradation of agricultural plastic films: A critical review. Journal of Polymers and the Environment 15 (2): 125-150. https://doi.org/10.1007/s10924-007-0053-8

Latney, L.V., Toddes, B.D., Wyre, N.R., Brown, D.C., Michel, K.E. and Briscoe, J.A. 2017. Effects of various diets on the calcium and phosphorus composition of mealworms (Tenebrio molitor larvae) and superworms (Zophobas morio larvae). American journal of veterinary research 78(2): 178-185. https://doi.org/10.2460/ajvr.78.2.178

Mancini, S., Mattioli, S., Paolucci, S., Fratini, F., Dal Bosco, A., Tuccinardi, T. and Paci, G. 2021. Effect of Cooking Techniques on the in vitro Protein Digestibility, Fatty Acid Profile, and Oxidative Status of Mealworms (Tenebrio molitor). Frontiers in Veterinary Science 8: 675572. https://doi.org/10.3389/fvets.2021.675572

Mastoraki, M., Mollá Ferrándiz, P., Vardali, S.C., Kontodimas, D.C., Kotzamanis, Y.P., Gasco, L., Chatzifotis, S. and Antonopoulou, E. 2020. A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture 528: 735511. https://doi.org/10.1016/j.aquaculture.2020.735511

Melenchón, F., Larrán, A.M., de Mercado, E., Hidalgo, M.C., Cardenete, G., Barroso, F.G., Fabrikov, D., Lourenço, H.M., Pessoa, M.F. and Tomás-Almenar, C. 2021. Potential use of black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor) insectmeals in diets for rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition 27(2): 541-505. https://doi.org/10.1111/anu.13201

Melgar-Lalanne, G., Hernández-Álvarez, A.J. and Salinas-Castro, A. 2019. Edible Insects Processing: Traditional and Innovative Technologies. Comprehensive Reviews in Food Science and Food Safety18(4): 1166-1191.https://doi.org/10.1111/1541-4337.12463

Mesa, M.N. and Botero-Aguirre, M.C. 2007. La cachama blanca (Piaractus brachypomus), una especie potencial para el mejoramiento genético. Revista Colombiana de Ciencias Pecuarias 20(1): 79-86. Retrieved from http://www.scielo.org.co/scielo.php?pid=S0120-06902007000100010&script=sci_arttext

Mikołajczak, Z., Rawski, M., Mazurkiewicz, J., Kierończyk, B. and Józefiak, D. 2020. The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals 10(6): 1-20. https://doi.org/10.3390/ani10061031

Ministerio de Agricultura y Desarrollo Rural. 2021. Dirección de Cadenas Pecuarias, Pesqueras y Acuícolas. Retrieved from https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf

Moruzzo, R., Riccioli, F., Espinosa Diaz, S., Secci, C., Poli, G. and Mancini, S. 2021. Mealworm (Tenebrio molitor): Potential and challenges to promote circular economy. Animals 11(9): 2568. https://doi.org/10.3390/ani11092568

Motte, C., Rios, A., Lefebvre, T., Do, H., Henry, M. and Jintasataporn, O. 2019. Replacing fish meal with defatted insect meal (Yellow mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals 9(5): 258. https://doi.org/10.3390/ani9050258

Nowak, V., Persijn, D., Rittenschober, D. and Charrondiere, U.R. 2016. Review of food composition data for edible insects. Food Chemistry193: 39-46. https://doi.org/10.1016/j.foodchem.2014.10.114

Nukmal, N., Umar, S., Amanda, S.P. and Kanedi, M. 2018. Effect of styrofoam waste feeds on the growth, development and fecundity of mealworms (Tenebrio molitor). Journal of Biological Sciences 18(1): 24-28. https://doi.org/10.3844/ojbsci.2018.24.28

OECD. 2022. Global Plastics Outlook Economic Drivers, Environmental Impacts and Policy Options. Retrieved from https://rds.org.co/apc-aa-files/205ec78c9cca6d1850bdca24e20e50bf/document.pdf

Panini, R.L., Freitas, L.E.L., Guimarães, A.M., Rios, C., da Silva, M.F.O., Vieira, F.N., Fracalossi, D.M., Samuels, R.I., Prudêncio, E.S., Silva, C.P., & Amboni, R.D.M.C. 2017. Potential use of mealworms as an alternative protein source for Pacific white shrimp: Digestibility and performance. Aquaculture 473: 115-120. https://doi.org/10.1016/j.aquaculture.2017.02.008

Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., Bovera, F. and Parisi, G. 2017. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology 226: 12- 20. https://doi.org/10.1016/j.anifeedsci.2017.02.007

Plastics Europe. 2015. An analysis of European plastics production, demand and waste data. Retrieved from https://plasticseurope.org/wp-content/uploads/2021/10/2015-Plastics-the-facts.pdf

Prachom, N., Boonyoung, S., Hassaan, M.S., El-Haroun, E. and Davies, S.J. 2021. Preliminary evaluation of Superworm (Zophobas morio) larval meal as a partial protein source in experimental diets for juvenile Asian sea bass, Lates calcarifer. Aquaculture Nutrition 27(5):1304-1314. https://doi.org/10.1111/anu.13269

Prodhan, M. M. H., & Khan, M. A. (2018). Management practice adoption and productivity of commercial aquaculture farms in selected areas of Bangladesh. Journal of the Bangladesh Agricultural University, 16(1), 111–116.

The R Project for Statistical Computing. 2021. Retrieved from https://www.r-project.org/

Ribeiro, F.M., Divino, P.V., Freitas, X., Oliveira Dos Santos, E., Martins De Sousa, R., Carvalho, T.A., Menezes De Almeida, E., Oliveira, T., Santos, D. and Carvalho Costa, A. 2016. Food and nutrition Pirapitinga (Piaractus brachypomums) and Tambaqui (Colossoma macropomum). Publicações em Medicina Veterinária e Zootecnia 10(12), 873-882. https://doi.org/10.22256/pubvet.v10n1

Ribeiro, J.C., Lima, R.C., Maia, M.R.G., Almeida, A.A., Fonseca, A.J.M., Cabrita, A.R.J. and Cunha, L.M. 2019. Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT - Food Science and Technology 113: 108335. https://doi.org/10.1016/j.lwt.2019.108335

Sánchez-Muros, M.J., Barroso, F.G. and Manzano-Agugliaro, F. 2014. Insect meal as renewable source of food for animal feeding: A review. Journal of Cleaner Production 65: 16-27. https://doi.org/10.1016/j.jclepro.2013.11.068

Sánchez-Muros, M. J., de Haro, C., Sanz, A., Trenzado, C. E., Villareces, S., & Barroso, F. G. (2016). Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquaculture Nutrition 22(5): 943–955. https://doi.org/10.1111/anu.12313

Scientific Standards & Methods - AOAC International. 1996. Retrieved from https://www.aoac.org/scientific-solutions/

Shah AA, Totakul P, Matra M, Cherdthong A, Hanboonsong Y, Wanapat M. Nutritional composition of various insects and potential uses as alternative protein sources in animal diets. Anim Biosci. 2022 Feb;35(2):317-331. doi: 10.5713/ab.21.0447. Epub 2022 Jan 4. PMID: 34991214; PMCID: PMC8831828.

Smith, R. and Barnes, E. 2015. PROteINSECT Consensus Business Case Report: Determining the contribution that insects can make to addressing the protein deficit in Europe. Retrieved from www.proteinsect.eu

Soares, R., Rafael Ribeiro, dos Santos Benfica, T.A.R., Ferraz, V.P. and Moreira Santos, E. 2019. Nutritional composition of insects Gryllus assimilis and Zophobas morio: Potential foods harvested in Brazil. Journal of Food Composition and Analysis 76: 22-26. https://doi.org/10.1016/j.jfca.2018.11.005

Sogari, G., Amato, M., Biasato, I., Chiesa, S., & Gasco, L. 2019. The potential role of insects as feed: A multi-perspective review. Animals 9(4): 119. https://doi.org/10.3390/ani9040119

Song, S.G., Chi, S.Y., Tan, B.P., Liang, G.L., Lu, B.Q., Dong, X.H., Yang, Q.H., Liu, H.Y. and Zhang, S. 2018. Effects of fishmeal replacement by Tenebrio molitor meal on growth performance, antioxidant enzyme activities and disease resistance of the juvenile pearl gentian grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀). Aquaculture Research 49(6): 2210-2217. https://doi.org/10.1111/are.13677

Stathopoulou, P., Asimaki, A., Berillis, P., Vlahos, N., Levizou, E., Katsoulas, N., Karapanagiotidis, I.T., Rumbos, C.I., Athanassiou, C.G. and Mente, E. 2022. Aqua-Ento-Ponics: Effect of Insect Meal on the Development of Sea Bass, Dicentrarchus labrax, in Co-Culture with Lettuce. Fishes 7(6): 397. https://doi.org/10.3390/fishes7060397

Su, J., Gong, Y., Cao, S., Lu, F., Han, D., Liu, H., Jin, J., Yang, Y., Zhu, X. and Xie, S. 2017. Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish and Shellfish Immunology 69: 59-66. https://doi.org/10.1016/j.fsi.2017.08.008

Szendrő, K., Nagy, M.Z. and Tóth, K. 2020. Consumer acceptance of meat from animals reared on insect meal as feed. Animals 10(8): 1-10. https://doi.org/10.3390/ani10081312

Tania, Maria & Anand, Vijaya. (2023). The implementation of microbes in plastic biodegradation. Journal of Umm Al-Qura University for Applied Sciences. 10.1007/s43994-023-00077-y.

Tubin, J.S.B., Paiano, D., Hashimoto, G.S. de O., Furtado, W.E., Martins, M.L., Durigon, E. and Emerenciano, M.G.C. 2020. Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system. Aquaculture 519: 734763. https://doi.org/10.1016/j.aquaculture.2019.734763

Valdez, C. and Untiveros, G. 2010. Extracción y caracterización del aceite de las larvas del Tenebrio molitor. Revista de la Sociedad Química del Perú 76(4): 407-414. Retrieved from: http://www.scielo.org.pe/scielo.php?pid=S1810-634X2010000400011&script=sci_arttext&tlng=pt

van Dijk, M., Morley, T., Rau, M.L. and Saghai, Y. 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food 2(7): 494-501. https://doi.org/10.1038/s43016-021-00322-9

Van Huis, A. 2013. Potential of insects as food and feed in assuring food security. Annual Review of Entomology 58: 563–583. https://doi.org/10.1146/annurev-ento-120811-153704

Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G. and Vantomme, P. 2013. Edible insects: future prospects for food and feed security. No. 171). Food and agriculture organization of the United Nations.

Vásquez-Torres, W. and Arias-Castellanos, J.A. 2012. Effect of dietary carbohydrates and lipids on growth in cachama (Piaractus brachypomus). Aquaculture Research 44(11): 1768-1776.

Vásquez-Torres, W., Pereira Filho, M. and Arias-Castellanos, J.A. 2011. Optimum dietary crude protein requirement for juvenile cachama Piaractus brachypomus. Ciência Rural 41: 2183–2189. Retrieved from http://www.redalyc.org/articulo.oa?id=33121069020

Vega, F. and Dowd, P. 2005. The Role of Yeasts as Insect Endosymbionts. Insect-fungal associations: ecology and evolution. (ed. by FE Vega & M Blackwell), pp. 211–243. Oxford University Press, Oxford, UK.

Verbeke, W., Spranghers, T., De Clercq, P., De Smet, S., Sas, B. and Eeckhout, M. 2015. Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Animal Feed Science and Technology 204: 72-87. https://doi.org/10.1016/j.anifeedsci.2015.04.001

Wang, Y., Luo, L., Li, X., Wang, J., Wang, H., Chen, C., Guo, H., Han, T., Zhou, A. and Zhao, X. 2022. Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) and yellow mealworm (Tenebrio molitor Linn.) associated with distinct gut microbiome changes. Science of the Total Environment 837: 155719. https://doi.org/10.1016/j.scitotenv.2022.155719

Wenxiao Sun, Yizhi Zhang, Hong Zhang, Hui Wu, Qiang Liu, Fan Yang, MengZong Hou, Yanjiao Qi, Wenbo Zhang (2024). Exploitation of Enterobacter hormaechei for biodegradation of multiple plastics. Science of The Total Environment, Volume 907,2024

Wu, Q., Tao, H. and Wong, M.H. 2019. Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. Environmental Geochemistry and Health 41(1): 7-26. https://doi.org/10.1007/s10653-018-0161-5

Yang, Brandon, A.M., Andrew Flanagan, J.C., Yang, J., Ning, D., Cai, S.Y., Fan, H.Q., Wang, Z.Y., Ren, J., Benbow, E., Ren, N.Q., Waymouth, R.M., Zhou, J., Criddle, C.S., & Wu, W.M. 2018. Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere 191: 979-989. https://doi.org/10.1016/j.chemosphere.2017.10.117

Yang, Chen, J., Wu, W. M., Zhao, J. and Yang, J. 2015a. Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm’s gut. Journal of Biotechnology 200: 77-78. https://doi.org/10.1016/j.jbiotec.2015.02.034

Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R. and Jiang, L. 2015b. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science and Technology 49(20): 12080-12086. https://doi.org/10.1021/acs.est.5b02661

Zielińska, E., Zieliński, D., Jakubczyk, A., Karaś, M., Pankiewicz, U., Flasz, B., Dziewięcka, M. and Lewicki, S. 2021. The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters. Food Chemistry 345: 128846. https://doi.org/10.1016/j.foodchem.2020.128846

Published
2024-09-01
How to Cite
Bonilla-Amaya, Miguel F., Adriana P. Muñoz-Ramírez, Fredy A. Aguilar-Aguilar, and Karol Bibiana Barragán-Fonseca. 2024. “Consumption of Expanded Polystyrene by Tenebrio Molitor and Zophobas Atratus, and Use of Their Meal As Feed for Piaractus Brachypomus”. Archivos Latinoamericanos De Producción Animal 32 (3 in progr), 121-36. https://doi.org/10.53588/alpa.320301.
Section
Original paper