Growth, carcass traits and meat quality of bulls of three biotypes subjected to re-implantation and supplementation in improved tropical savannah

Keywords: beef, bullocks, carcass, saleable yield, cutability, eating quality


Bull calves representing three biotypes: Predominant Bos indicus (TROPBI; n = 24); tropically-adapted taurine x TROPBI crossbred (TROP-Taurus-Indicus, n = 32) and temperate B. taurus x TROPBI crossbred (TEMP-Taurus-Indicus, n = 33)] were selected and randomly assigned to pasture supplementation treatments [mineral (CONTROL-SUPPL) or strategic protein-energy supplementation (STRT-SUPPL)] and implant regimes [RIMPL: repeated (d-0, d-90) Zeranol-72mg implantation (ZER-ZER) or Trenbolone Acetate-140 mg/Estradiol-20mg implantation (d-0) plus Zeranol-72mg implantation (d-90) (ESTBA-ZER)] to be compared in growth performance, cutability, textural [shear force (WBSF)] and sensorial quality (descriptive sensory ratings). The variance analyses indicated that TEMP-Taurus-Indicus exceeded TROP-Taurus-Indicus and TROPBI in body weight, daily gain, carcass weight, and frequency of the top Venezuelan quality category for bull carcasses (P < 0.015). Significant interactions of second order for the external fat finish score and first-order for the length of the pelvic member were detected. The TROP- and TEMP-Taurus-Indicus bulls exhibited larger ribeye areas than the TROPBI (P < 0.001) and more than 60% reached the top (USDA 1) yield grade (P = 0.022). There was a significant second-order interaction for the WBSF.  Under STRT-SUPPL and ZER-ZER implant regime the TEMP-Taurus-Indicus exhibited lower WBSF values (4.72 kg) than TROP-Taurus-Indicus (5.57 kg; P = 0,003) and TROPBI (6.29 kg; P < 0,001).  Steaks from animals STRT-SUPPL and ESTBA-ZER-implanted TROPBI required lower (P = 0.020) WBSF than those from ZER-ZER-implanted TROPBI. The results suggest that under the conditions presented herein: (a) greater performance for growth traits occurs in the descendance of TROPBI cows bred to TEMP taurine sires, (b) heterosis does not manifest for carcass or meat sensory quality, and (c) the modest improvements observed in tenderness (lower shear force) with the protein-energy supplement in the TEMP-Taurus-Indicus group seemed insufficient to be detected by Venezuelan consumers.  


Download data is not yet available.

Author Biographies

Nelson Huerta-Leidenz, Department of Animal and Food Sciences, Texas Tech University

Veterinarian and Meat Scientist with strong managerial and scientific background, extremely task-oriented, with international experience in meat marketing and market access in Mexico, Central and South America.

Nancy C Jerez Timaure, Universidad Austral de Chile

Ing. Agr. M. Sc. Ph. D.


AMSA. 2016. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat. American Meat Science Association Educational Foundation. 105pp.

Antari, R. 2018. Skeletal growth in cattle in response to nutritional and hormonal manipulation. Ph.D. thesis. School of Agriculture and Food Science. The University of Queensland.

Araujo-Febres, O., y E. Pietrosemoli. 1991. Estudio comparativo de implantes hormonales vs. no hormonales en novillos comerciales a pastoreo con suplementación. Revista de la Facultad de Agronomía (LUZ), 8(3): 209-217.

Bunning, H., E. Wall, M. G. Chagunda, G. Banos, and G. Simm. 2019. Heterosis in cattle crossbreeding schemes in tropical regions: meta-analysis of effects of breed combination, trait type, and climate on level of heterosis. Journal of Animal Science, 97 (1): 29–34.

Byers, F. M., N. O. Huerta-Leidenz, C. Rodríguez Matos, J. Ordoñez, J. F. Avellaneda, and G. Stone Jr. 1997. Strategic nutritional management technologies for enhancing forage beef production in the tropical Venezuelan llanos. Archivos Latinoamericanos de Produccion Animal, 5 (Supl. 1), 177-179.

Chacón, E., y H. Marchena. 2008. Tecnologías alimentarias apropiadas para la producción con bovinos a pastoreo. En: C. González Stagnaro, N. Madrid Bury, E. Soto Belloso (Eds.). Desarrollo Sostenible en la Ganadería de Doble Propósito. Fundación GIRARZ, Ediciones Astro Data: Maracaibo, Venezuela; pp. 435–453.

COVENIN. 1983. Comisión Venezolana de Normas Industriales. Norma venezolana 2072-83. Ganado bovino. Inspección Postmortem. p.10, Caracas, Venezuela.

Crouse, J. D., L. V. Cundiff, R. M. Koch, M. Koohmaraie, and S. C. Seideman. 1993. Comparisons of Bos indicus and Bos taurus inheritance for carcass beef characteristics and meat palatability. Roman L. Hruska U.S. Meat Animal Research Center. 121.

Decreto Presidencial No. 181 (1994) Gaceta Oficial de la República de Venezuela No 4737. P. 4. Caracas Venezuela.

Decreto Presidencial No. 1896. 1997. Gaceta Oficial de la República de Venezuela No 36.242. Venezuela República Bolivariana. p. 4. Caracas, Venezuela.

Duckett, S. K., B. M. Koch, and J. G. Andrae. 2016. Lean beef production systems for a growing world population. Archivos Latinoamericanos de Producción Animal, 24 (2): 75-82.

Duckett, S. K., and S. L. Pratt. 2014. Anabolic implants, and meat quality. Meat Science and Muscle Biology Symposium. Journal of Animal Science, 92: 3–9.

Elzo, M. A., D. D. Johnson, J. G. Wasdin, and J. D. Driver. 2012. Carcass and meat palatability breed differences and heterosis effects in an Angus-Brahman multibreed population. Meat Science, 90: 87–92.

Flórez, H., G. Martínez, H. Ballesteros, L.M. León, S. Castañeda, E. Moreno, L. E. Arias, J. C. Torres, C. A. Rodríguez, F. Peña y A. Uribe. 2014. Rendimiento en carne de bovinos criollos y europeos y sus cruces con cebú en las condiciones de la Orinoquia colombiana. Actas Iberoamericanas de Conservación Animal, 4: 12-15.

Fondo Nacional de Ciencia, Tecnología e Innovación (MCT-FONACIT). 2002. Código de Bioética y Bioseguridad, 2nd ed.; Ministerio del Poder Popular para Ciencia, Tecnología e Industrias Intermedias y el Fondo Nacional de Ciencia, Tecnología e Innovación: Caracas, Venezuela, pp. 1–35. Disponible online: (accessed on 10 March 2020).

Foutz, C.P., H. G. Dolezal, T. L. Gardner, D. R. Gill, J. L. Hensley, and J. B. Morgan. 1997. Anabolic implant effects on steer performance, carcass traits, subprimal yields, and longissimus muscle properties. Journal of Animal Science, 75:1256–1265.

Freitas Silveira, R. M., J. Ferreira, M. Busanello, A. M. de Vasconcelos, F. L. Jannuzzi Valente, and D. A. Evangelista Facanha. 2021. Relationship between thermal environment and morphophysiological, performance and carcass traits of Brahman bulls raised on tropical pasture: A canonical approach to a set of indicators. Journal of Thermal Biology, 96: 102814

Gama, L. T., M. C. Bressan, E. C. Rodrigues, L. V. Rossato, O. C. Moreira, S. P. Alves, and R. J. B. Bessa. 2013. Heterosis for meat quality and fatty acid profiles in crosses among Bos indicus and Bos taurus finished on pasture or grain. Meat Science, 93: 98-104.,1016/j.meatsci.2012.08.005

Garmyn, A. J. and M. F. Miller. 2014. Implant and beta-agonist impacts on beef palatability. Meat Science and Muscle Biology Symposium. Journal of Animal Science. 92: 10–20.

Gathura, D. M., T. K. Musaya, and A. K. Kahl. 2020. Meta-analysis of genetic parameters for traits of economic importance for beef cattle in the tropics. Livestock. Science, 242, Article 104306,,1016/j.livsci.2020,104306.

Gray, D. G., J. A. Unruh, M. E. Dikeman, and J. S. Stevenson. 1986. Implanting Young Bulls with Zeranol from Birth to Four Slaughter Ages: III. Growth Performance and Endocrine Aspects. Journal of Animal Science, 63:747-756.

Greathouse, J. R., M. C. Hunt, M. E. Dikeman, L. R. Corah, C. L. Kasmer and D. H. Kropf. 1983. Ralgro-Implanted bulls: Performance, carcass characteristics, longissimus palatability and electrical stimulation. Journal of Animal Science, 57:355-363.

Huerta-Leidenz, N., N. Jerez-Timaure, A. Rodas-González, J. O. Sarturi, M. M. Brashears, M. F. Miller, and M. T. Brashears. 2022. The effects of castration, implant protocol, and supplementation of Bos indicus-influenced beef cattle under tropical savanna conditions on growth performance, carcass characteristics, and meat quality. Animals,12,366. https://,3390/ani12030366.

Huerta-Leidenz, N., N. Jerez-Timaure, S. Godoy, C. Rodríguez-Matos, and O. Araujo-Febres. 2021. Fattening performance and carcass traits of implanted and supplemented grass-fed bulls. Revista Científica FCV-LUZ, 31 (2): 53-60,

Huerta-Leidenz, N., O. Hernández, A. Rodas-González, J. Ordoñez V., H. L. Pargas, E. Rincón, A. Del Villar, y B. Bracho. 2013. Peso corporal y rendimiento en canal según clase sexual, tipo racial, condición muscular, edad y procedencia de bovinos venezolanos. Nacameh 7 (2): 75-96.

Hunt, D. W., D. M. Henricks, G. C. Skelley, and L. W. Grimes. 1991. Use of enbolone acetate and estradiol in intact and castrate male cattle: Effects on growth, serum hormones, and carcass characteristics. Journal of Animal Science, 69:2452-2462.

Jerez-Timaure, N., and N. Huerta-Leidenz. 2009. Effects of breed type and supplementation during grazing on carcass traits and meat quality of bulls fattened on improved savannah. Livestock Science. 121, 219–226.,1016/j.livsci.2008.06.015

Jerez-Timaure, N., G. Martínez, y M. González. 2015. Valor comercial de la canal y de la carne de toretes Senepol x Brahman en Venezuela. Revista Científica FCV-LUZ, 25 (6): 462-470.

Ježek, F., J. Kameník, B. Macharáčková, K. Bogdanovičová, and J. Bednář. 2019. Cooking of meat: effect on texture, cooking loss and microbiological quality – a review. Acta Veterinaria Brno, 88:487–496;

Johnson, B. J., F. R. B. Ribeiro, and J. L. Beckett. 2013. Application of growth technologies in enhancing food security and sustainability. Animal Frontiers 3: 8-13.

Johnston, D. J., A. Reverter, D. M. Ferguson, J. M. Thompson, and H. M Burrow. 2003. Genetic and phenotypic characterization of animal, carcass, and meat quality traits from temperate and tropically adapted beef breeds. 3. Meat quality traits. Australian Journal of Agricultural Research, 54: 135–147.

Kirkpatrick, T. J. 2020. The effect of growth-promoting implants and feeding duration on live performance and behavioral characteristics, biometric measurements, empty body composition, and energy retention of serially harvested beef steers. M.Sci, thesis. West Texas A&M University.

Lascano, C. E. 1991. Harris Stobbs Memorial Lecture: Managing the grazing resource for animal production in tropical America. Tropical grasslands, 25, 66-72.

Lean, I. J., H. M. Golder, N. M. Lees, P. Mc Gilchrist, and J.E. Santos. 2018. Effects of hormonal growth promotants on beef quality: A meta-analysis. Journal of Animal Science, 96: 675–2697.

Macharáčková, B., K. Bogdanovičová, F. Ježek, J. Bednář, D. Haruštiaková, and J. Kameník. 2021. Cooking loss in retail beef cuts: The effect of muscle type, sex, ageing, pH, salt, and cooking method. Meat Science, 171: 108270.

Montero, A., N. Huerta‐Leidenz, A. Rodas-González, and L. Arenas de Moreno. 2014. Fabrication, and variation of the cut-out yield of beef carcasses in Venezuela: Anatomical description of the process and equivalency of cut nomenclature to North American counterparts. NACAMEH, 8:1-22.

Morón-Fuenmayor, O., and J. L. Rumbos-Gómez. 1997b. Uses of anabolic agents on the growth of crossbred commercial bulls as a management strategy in Venezuelan savannas. Archivos Latinoamericanos de Producción Animal, 5: 183–185.

Morón-Fuenmayor, O., and J. L. Rumbos-Gomez. 1997a. Dual implantation use and breed type effect on bulls under savanna conditions. Archivos Latinoamericanos de Producción Animal, 5: 180–181.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2016. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, p. 494.

Ordoñez, J. A. 2020. Una revisión de los sistemas de apareamiento para el trópico. Novasinergia 3 (1): 6-16. diciembre-mayo.

Pereira, A. S. C., F. Baldi, R. D. Sainz, B. L. Utembergue, H. L. J. Chiaia, C. U. Magnabosco, F. R. Manicardi, F. R. C. Araujo, C. F. Guedes, R. C. Margarido, P. R. Leme, and P. J. A. Sobral. 2015. Growth performance, and carcass and meat quality traits in progeny of Poll Nellore, Angus, and Brahman sires under tropical conditions. Animal Production Science, 55:1295-1302.,1071/AN13505

Phelps, K. J., D. D. Johnson, M. A. Elzo, C. B. Paulk, and J. M. González. 2017. Effect of Brahman genetics on myofibrillar protein degradation, collagen crosslinking, and tenderness of the longissimus lumborum. Journal of Animal Science, 95:5397-5406.,2527/jas2017.2022

Plasse, D. 1992. Presente y futuro de la producción bovina en Venezuela. En: C. González Stagnaro (Ed). Ganadería Mestiza de Doble Propósito Universidad de Zulia, Facultad de Agronomía y Ciencias Veterinarias, FUSAGRI, GIRARZ, Maracaibo, Venezuela, pp. 1-24.

Plasse, D. 2000. Cruzamiento en bovinos de carne en América Latina tropical: Que sabemos y que nos falta saber. En: Anais do III Simpósio Nacional de Melhoramento Animal – Palestras (pp. 165-179). Belo Horizonte, MG, Brasil.

Plasse, D., H. Fossi, R. Hoogesteijn, O. Verde, C. M. Rodríguez, R. Rodríguez, and P. Bastidas. 1995. Growth of F1 Bos Taurus × Bos indicus versus Bos indicus beef cattle in Venezuela†. II. Initial, final, and carcass weight of bulls, and breeding weight of heifers. Journal of Animal Breeding and Genetics, 12: 133-145.

Plasse, D., O. Verde, H. Fossi, R. Romero, R. Hoogesteijn, P. Bastidas, and J. Bastardo. 2002. (Co)variance components, genetics parameters and annual trends for calf weights in a pedigree Brahman herd under selection for three decades. Journal of Animal Breeding and Genetics, 119:141-1153.

Platter, W. J., J. D. Tatum, K. E. Belk, J. A. Scanga, and G. C. Smith. 2003. Effects of repetitive use of hormonal implants on beef carcass quality, tenderness, and consumer ratings of beef palatability. Journal of Animal Science, 81: 984–996.

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-

Reichhardt, C. C., R. Feuz, T. J. Brady, L. A. Motsinger, R. K. Briggs,. B. R. Bowman, M. D. Garcia, R. Larsen, and K. J. Thornton. 2021. Domestic Animal Endocrinology, 77: 106633

Riera-Sigala T., N. Huerta-Leidenz, M. Arispe-Zubillaga, A. Rodas-González, and N. Jerez-Timaure. 2022. Assessing the impact of Bos taurus x Bos indicus crossbreeding and postmortem technologies on the eating quality of loins from pasture-finished young bulls. Archivos Latinoamericanos de Producción Animal, 30 (3): en prensa

Riera-Sigala, T., A. Rodas-González, C. Rodríguez-Matos, J. Avellaneda-Barbarito, y N. Huerta-Leidenz. 2004. Rasgos de crecimiento y pesos en canal de toros Brahman puros y F1 Brahman x Bos taurus criados y cebados semi-intensivamente en sabana mejorada. Archivos Latinoamericanos de Producción Animal, 12: 66-72.

Riera-Sigala, T., N. Huerta-Leidenz, N. Jerez-Timaure, A. Rodas-González, J. Ordoñez-Vela, and A. Moya. 2021. Preliminary observations on carcass traits and meat yield of five types of Brahman-influenced grass-fed bulls. Archivos Latinoamericanos de Producción Animal, 29(1-2): 67-78.

Riley, D. G., C. C. Chase Jr., S. W. Coleman, W. A. Phillips, M. F. Miller, J. C. Brooks, D. D. Johnson, and T. A. Olson. 2012. Genetic effects on carcass quantity, quality, and palatability traits in straightbred and crossbred Romosinuano steers. Journal of Animal Science, 90(7):2159.,2527/jas.2011-4471

Rodas-González, A., N. Huerta-Leidenz, and N. Jerez-Timaure. 2017. Benchmarking Venezuelan quality grades for grass-fed cattle carcasses. Meat Muscle Biol. 1: 71-80.

Rodas-González, A., N. Huerta-Leidenz, N. Jerez-Timaure, and M. F. Miller. 2009. Establishing tenderness thresholds of Venezuelan beef steaks using consumer and trained sensory panels. Meat Science, 83:218-223.,1016/j.meatsci.2009.04.021

Romero, R., D. Plasse, O. Verde, R. Hoogesteijn, P. Bastidas y R. Rodríguez. 2000. Absorción de Brahman a Guzerá y Nelore en pasto mejorado. 1. Porcentajes de preñez, parición, destete y disponibilidad a dieciocho meses. Livest. Res. Rural Development.

Rotta, P. P., R. Martin do Prado, I. Nunes do Prado, M. Velandia Valero, J. Vergilio Visentainer, R., and Rodrigues Silva. 2009. The Effects of Genetic Groups, Nutrition, Finishing Systems and Gender of Brazilian Cattle on Carcass Characteristics and Beef Composition and Appearance: A Review. Asian-Australian Journal of Animal Science, 22 (12): 1718 – 1734.

Sarmiento, G., M. Pinillos, M. Pereira da Silva, and D. Acevedo. 2004. Effects of soil water regime and grazing on vegetation diversity and production in a hyperseasonal savanna in the Apure’s Llanos, Venezuela. Journal of Tropical Ecology, 20: 2019-220.

SAS INSTTUTE. 2022. SAS OnDemand for Academics Release 9.04.01M5P09132017 SAS Institute Inc.

Scheffler, T. L. 2022. Connecting heat tolerance and tenderness in Bos indicus Influenced cattle. Animals, 12,220.

Schönfeldt, H. C., and P. E. Strydom. 2011. Effect of age and cut on cooking loss, juiciness, and flavour of South African beef. Meat Science, 87: 180–190.

Schutt, K. M., H. M. Burrow, J. M. Thompson, and B. M. Bindon. 2009. Brahman and Brahman crossbred cattle grow on pasture and in feedlots in subtropical and temperate Australia. 2. Meat quality and palatability. Animal Production Science, 49: 452-460,,1071/EA08082

Smith, J. K., E. J. Chacón-Moreno, R.H.G Jongman, Ph. Wenting, and J. H. Loedeman, 2006. Effect of dyke construction on water dynamics in the flooding savannahs of Venezuela. Earth Surface Processes and Landforms, 31, 81–96.

Smith, S. H., R. F. Plmpton Jr., B. D. VanStavern, N. A. Parrett, and H. W. Ockerman. 1989. The effects of four implant treatments and two feeding systems on carcass and palatability characteristics of young bulls. Journal of Animal Science. 67:2655- 2660.

Smith, Z. K., and B. J. Johnson. 2020. Mechanisms of steroidal implants to improve beef cattle growth: A review. Journal of Applied Animal Research. 48: 133–141.

Song, M. K., and S.H. Choi. 2001. Growth promoters and their effects on beef production - Review -. Asian-Australasian Journal of Animal Science, 14, 123–135. ajas.2001.123.

Tejos, M. R., N. Mejías, Y. Pérez, y J. F. Avellaneda. 2005. Manejo de pasturas y producción de carne en el llano bajo de Venezuela. Memorias del IX Seminario de pastos y forrajes. 171-181.[1] RonyTejos%20M.pdf

Torrecilhas, J. A., E. San Vito, G. Fiorentini, P. de Souza Castagnino, T. A. Simioni, J. F. Lage, and T. T. Berchielli. 2021. Effects of supplementation strategies during the growing phase on meat quality of beef cattle finished in different systems. Livestock Science, 247:104465.,1016/j.livsci.2021.104465

Torres, G. R. 1994. The agroecosystem modules de Apure as an instrument to confront drought. Revista de la Facultad de Agronomía (LUZ), 11:175-189.

USDA. 2017. Official United States Standards for Grades of Carcass Beef. Washington, DC. United States Department of Agriculture, Agricultural Marketing Service.

Vázquez-Mendoza, O. V., G. Aranda-Osorio, M. Huerta-Bravo, A. E. Kholif, M. M. Y. Elghandour, A. Z. M. Salem, and E. Maldonado-Simán. 2017. Carcass and meat properties of six genotypes of young bulls finished under feedlot tropical conditions of Mexico. Animal Production Science, 57: 1186–1192. doi:10.1071/AN141037

Watson, R., R. Polkinghorne, A. Gee, M. Porter, J.M. Thompson, D. Ferguson, D. Pethick, and B. McIntyre. 2008. Effect of hormonal growth promotants on palatability and carcass traits of various muscles from steer and heifer carcasses from a Bos indicus-Bos taurus composite cross. Australian Journal of Experimental Agriculture., 48: 1415–1424.

Webb, M. J., J. J. Block, A. A. Harty, R. R. Salverson, R. F. Daly, J. R. Jaeger, K. R. Underwood, R. N. Funston, D. P. Pendell, C. A. Rotz, K. C. Olson, and A. D. Blair. 2020. Cattle and carcass performance, and life cycle assessment of production systems utilizing additive combinations of growth promotant technologies. Translational Animal Science, 4:1-15 doi: 10.1093/tas/txaa216

Wheeler, T. L., S. D. Shackelford, and M. Koohmaraie. 2005. Carcass and meat traits of tropically adapted breeds evaluated at the U.S. Meat Animal Research Center. En: A Compilation of Research Results Involving Tropically Adapted Beef Cattle Breeds. S-243 and S-277 Multistate Research Projects. Southern Cooperative Series Bulletin 405. p.p.154-161 ISBN: 1-58161-405-5.

Wright, S. A., P. Ramos, D. D. Johnson, J. M. Scheffler, M. A. Elzo, R. G. Mateescu, A. L. Bassa, C. C. Carra, and T. L. Schefflera. 2018. Brahman genetics influence muscle fiber properties, protein degradation, and tenderness in an Angus-Brahman multi-breed herd. Meat Science, 135:84-93.,1016/j.meatsci.2017.09.006

How to Cite
Huerta-Leidenz, Nelson, Nancy C Jerez Timaure, Jhones Onorino Sarturi, Omar Verde Sandoval, and Argenis Rodas-González. 2023. “Growth, Carcass Traits and Meat Quality of Bulls of Three Biotypes Subjected to Re-Implantation and Supplementation in Improved Tropical Savannah”. Archivos Latinoamericanos De Producción Animal 31 (2), 139-58.
Original paper