Productive performance of the hybrid Patinga (Piaractus mesopotamicus x Piaractus brachypomus) fed plant-derived feed with different levels of fish protein hydrolyzate

Keywords: aquaculture, feeding, use of co-products, nutrition

Abstract

O objetivo deste trabalho foi determinar a composição centesimal do hidrolisado proteico de pescado (HPP) e avaliar o desemprenho produtivo de alevinos do hibrido de patinga (Piaractus mesopotamicus x Piaractus brachypomus) alimentados com ração a base de ingredientes de origem vegetal. O HPP foi produzido com 80% de resíduos da filetagem da tilápia (cabeças, vísceras, escamas, barbatanas, coluna vertebral e tecido aderido) e 20% de sardinha inteira. Foram elaboradas cinco dietas com níveis crescente de 0, 2, 4, 6 e 8% de HPP. Para o desempenho produtivo foram utilizados 375 animais com peso médio de 0,4 ± 0,005 g. A composição centesimal do HPP foi de 40,74% de proteína bruta, 54,06% de lipídeos, 3,23% de cinzas e 6,429 kcal kg-1 de energia bruta (valores com base na matéria seca). Em relação ao desempenho, na análise polinomial o peso final, ganho em peso, comprimento final e taxa de crescimento especifico apresentaram resultados positivos até 4% de inclusão do HPP (p<0.05). Porém, a taxa de eficiência proteica e sobrevivência não mostraram diferenças significativas (p>0.05). Através da derivação da equação polinomial, indica-se a inclusão de 3,32% de HPP em rações a base de ingredientes de origem vegetal para alevinos do híbrido patinga.

Downloads

Download data is not yet available.

References

Abdul-Hamid, A., Bakar, J. e Bee, GH. 2002. Nutritional quality of spray dried protein hydrolysate from Black Tilapia (Oreochromis mossambicus). Food Chemistry, 78:69-74, doi.org/10.1016/S0308-8146(01)00380-6.

Aguila, JR., Suszko, J., Gibbs, AG. e Hoshizaki, DK. 2007. The role of larval fat cells in adult Drosophila melanogaster. Journal of Experimental Biology. 210:956-963. doi: 10.1242/jeb.001586. PMID: 17337708.

Aksnes, A., Hope, B., Jönsson, E., Björnsson, BT. e Albrektsen, S. 2006. Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed with high plant protein diets. I: Growth, growth regulation and feed utilization. Aquaculture, 261:305-317, 2006. doi.org/10.1016/j.aquaculture.2006.07.025.

Association of Official Analytical Chemistry (AOAC). 2012. Official methods of analysis of the AOAC. 19.ed. Gaithersburg, M.D, USA. IBSN: 0935584838.

Baldisserotto, B., Cyrino, JEP. e Urbinati, EC. 2014. Biologia e fisiologia de peixes neotropicais de água doce. Jaboticabal: FUNEP. ISBN: 9788578051358.

Bhaskar, N., Benila, T., Radha, C. e Lalitha, RG. 2008. Optimization of enzymatic hydrolysis of visceral waste proteins of catla (Catlacatla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology, 99:335–343. doi.org/10.1016/j.biortech.2006.12.015.

Broggi, JA., Wosniak, B., Uczay, J., Pessatti, ML. e Fabregat, TE. 2017. Hidrolisado proteico de resíduo de sardinha como atrativo alimentar para juvenis de jundiá. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 69:505-512. https://dx.doi.org/10.1590/1678-4162-8348.

Chalamaiah, M., Balaswamy, K., Narsingrao, G., Prabhakara-Rao, PG. e Jyothirmayi, T. 2013. Chemical composition and functional properties of mrigal (Cirrhinus mrigala) egg protein concentrates and their application in pasta. Journal of Food Science and Technology, 50:512-520, doi:10.1007/s13197.

Choi, YJ., Hur, S., Choi, BD., Konno, K., e Park, J. W. 2009. Enzymatic hydrolysis of recovered protein from frozen small croaker and functional properties of its hydrolysates. Journal of Food Science, 74:17-24. doi: 10.1111 / j.1750-3841.2008.00988.x.

Chotikachinda, R., Tantikitti, C., Benjakul, S., Rustad, T. e Kumarnsit, E. 2013. Production of protein hydrolysates from skipjack tuna (Katsuwonus pelamis) viscera as feeding attractants for Asian seabass (Lates calcarifer). Aquaculture Nutrition, 19:773-784. doi.org/10.1111/anu.12024.

Food and Agriculture Organization of the United Nations (FAO). (2020). The State of World Fisheries and Aquaculture. Sustainability in action. Rome. ISBN: 978-92-5-132692-3

Foh, MBK., Kamara, I., Amadou, BM., e Wenshui, X. 2011. Chemical and physicochemical properties of tilapia (Oreochromis niloticus) fish protein hydrolysate and concentrate. International Journal of Biological Chemistry, 5:21-36.

doi:10.3923/ijbc.2011.21.36.

Hardy, R. W. 2010. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, 41:770-776. doi.org/10.1111/j.1365-2109.2009.02349.x.

Hashimoto, DT., Senhorini, JA., Foresti, F., e Porto-Foresti, F. Interspecific fish hybrids in Brazil: management of genetic resources for sustainable use. Reviews in Aquaculture, 4: 108-118, 2012. doi.org/10.1111/j.1753-5131.2012.01067.x

Instituto Brasileiro de Geografia e Estatística (IBGE). 2019. Produção da Pecuária Municipal. IBGE. 45, 1-12.

Jerônimo, GT., Franceschini, L., Zago, AC., Silva, RJ., Pádua, SB., Ventura, AS., Ishikawa, MM., Tavares-Dias, M., e Martins, ML. 2015. Parasitos de peixes characiformes e seus híbridos cultivados no Brasil. In: Tavares‐Dias, M., e Mariano, WS. Aquicultura no Brasil: novas perspectivas (p. 429). São Carlos: Pedro & João Editores. ISBN. 978‐85‐7993‐272‐4.

Kristinsson, H. G. (2006). The Production, properties, and utilization of fish protein hydrolysates. In: Shetty, K., Paliyath, G., Pometto, A., & Levin, R. E. Food Biotechnology (p.1111-1133). New York: Taylor & Francis Group. IBSN: 0824753291.

Macedo-Viegas, E., Portella, MC., e Carneiro, DJ. 2004. Utilization of Fish Protein Hydrolysate in Prepared Diets for Pacu (Piaractus mesopotamicus), Larvae. Journal of Applied Aquaculture, 14:101-112. doi: 10.1300/J028v14n03_08.

Martins, V., Guimarães, C., Vieira, JA., e Hernandez, CP. 2009. Hidrolisado protéico de pescado obtido por vias química e enzimática a partir de corvina (Micropogonias furnieri). Quimca Nova, 32:61-66. doi.org/10.1590/S0100-40422009000100012.

Mazorra-Manzano, MA., Pacheco-Aguilar, R., Ramirez-Suarez, JC., Garcia-Sanchez, G., e Lugo-Sanchez, ME. 2012. Endogenous proteases in Pacific Whiting (Merluccius productus) muscle as a processing aid in functional fish protein hydrolysate production. Food and Bioprocess Technology, 5, 130-137. doi.org/10.1007/s11947-010-0374-9.

National Research Council (NRC). (2011). Nutrient requirements of fish and shrimp. The national academies press: Washington. IBSN: 0309163382.

Nilsang, S., Lertsiri, S., Suphantharia, M., e Assavanig, A. 2005. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering 70(4), 571-5780. doi.org/10.1016/j.jfoodeng.2004.10.011.

Ovissipour, M., Abedian-Kenari, A., Motamedzadegan, A., & Nazari, R. M. 2010. Chemical and biochemical hydrolysis of persian sturgeon (Acipenser persicus) visceral protein. Food and Bioprocess Technology, 5:460-465. https://doi.org/10.1007/s11947-009-0284-x.

Pacheco-Aguilar, R., Mazorra-Manzano, MA., e Ramirez-Suarez, JC. 2008. Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chemistry 109:782-789. doi.org/10.1016/j.foodchem.2008.01.047.

Pasupuleti, VK., Holmes, C., e Demain, AL. 2010. Applications of protein hydrolysates in biotechnology. In: Pasupuleti, V. K., & DEMAIN, A. L. Protein Hydrolysates in Biotechnology (p.1-10). New York: Springer. IBSN: 1402066732.

Pezzato, LE., Miranda, EC., Barros, MM., Pinto, LG., Furuya, WM., e Pezzato, A. 2002. Digestibilidade aparente de ingredientes para a tilápia do Nilo (Oreochromis niloticus). Revista Brasileira de Zootecnia, 31:1595-1604. dx.doi.org/10.1590/S1516-35982002000700001.

Randriamahatody, Z., Sylla, KSB., Nguyen, HTM., Donnay-Moreno, C., Razanamparany, L., Bourgougnon, N., e Bergé JP. Proteolysis of shrimp by-products (Peaneus monodon) from Madagascar CyTA. Journal of Food November 9:220-228. doi.org/10.1080/19476337.2010.518250.

Refstie, S., Olli, JJ., e Standal, H. 2004. Feed intake, growth, and protein utilization by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture 239(1-4), 331–349. doi.org/10.1016/j.aquaculture.2004.06.015.

Silva, TC., Rocha, Joana-D'Arc, MM.P., Signor, A., e Boscolo, WR. (2017). Fish protein hydrolysate in diets for Nile tilapia post-larvae. Pesquisa Agropecuária Brasileira, 52:485-492. dx.doi.org/10.1590/s0100-204x2017000700002.

Statistical Analysis Systems [SAS]. (2011). SAS/STAT User’s guide, Version 9.3. Cary, NC: SAS Institute Inc.

Tang, H., Wu, T., Zhao, Z., e Pan, X. 2008. Effects of fish protein hydrolysate on growthjperformance and humoral immune response in large yellow croaker (Pseudosciaena crocea R.). Journal of Zhejiang University, 9:684-690. doi:10.1631/jzus.B0820088.

Tao, R., Huang, X., Wang, J., Zhang, H., Zhang, Y., e Li M. 2010. Proposed diagnostic criteria for internet addiction. Addiction, 105:556-64. doi: 10.1111/j.1360-0443.2009.02828.x. PMID: 20403001.

Urbinati, EC., e Gonçalves, F. D. 2005. Pacu (Piaractus mesopotamicus). In: Baldisseroto, B., Gomes, L. C. (Ed.). Espécies nativas para piscicultura no Brasil (p.225 256). Santa Maria: Universidade Federal de Santa Maria. IBSN: 9788573911350

Zavareze, ER., Silva, CM., Mellado, MS., e Prentice-Hernández, C. 2009. Funcionalidade de hidrolisados proteicos de cabrinha (Prionotus punctatus) obtidos a partir de diferentes proteases microbianas. Química Nova, 32:1739-1743, doi.org/10.1590/S0100-40422009000700011.

Zheng, K., Liang, M., Yao, H., Wang, J. and Chang, Q. 2013. Effect of size‐fractionated fish protein hydrolysate on growth and feed utilization of turbot (Scophthalmus maximus L.). Aquaculture Reserch, 44:895-902. https://doi.org/10.1111/j.1365-2109.2012.03094.x.

Published
2022-12-23
How to Cite
Carvalho da Silva, Thiberio, and Wilson Rogério Boscolo. 2022. “Productive Performance of the Hybrid Patinga (Piaractus Mesopotamicus X Piaractus Brachypomus) Fed Plant-Derived Feed With Different Levels of Fish Protein Hydrolyzate”. Archivos Latinoamericanos De Producción Animal 30 (4), 293-300. https://doi.org/10.53588/alpa.300402.
Section
Original paper