Microbiota-microRNAs interaction, its importance in the development of the immune system in calves

Microbiota-microRNA y Sistema inmune en becerros

Keywords: digestive tract, immunity, microRNA, microbiome

Abstract

MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate eukaryotic gene expression, as well as their involvement in a wide range of physiological processes. Temporal and regional changes in miRNA expression have been observed, as well as a correlation between miRNA expression and the microbial population of the gastrointestinal tract in early life stages in calves. This work aimed to review the current knowledge of miRNAs in cattle and the understanding of miRNAs as regulators of immune cell function and their regulation of colonization of the gastrointestinal tract in the early life stages of the animal.

Downloads

Download data is not yet available.

Author Biographies

Carolina Robles-Rodriguez, Posgrado en Ciencias de la Producción y de la Salud Animal, UNAM.

Estudiante de Doctorado. Posgrado en Ciencias de la Producción y de la Salud Animal, UNAM. 

María Laura González-Dávalos, Laboratorio de Rumiología y Metabolismo Nutricional, FESC, UNAM

Técnico académico en el Laboratorio de Rumiología y Metabolismo Nutricional, FESC, UNAM.

Armando Shimada, Laboratorio de Rumiología y Metabolismo Nutricional, FESC, UNAM

Profesor emérito de la UNAM. Especialista en Nutrición Animal.

Carla Daniela Robles-Espinoza, Laboratorio Internacional de Investigación sobre el Genoma Humano, UNAM.

Investigador en el Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH) UNAM.

María Ofelia Mora Izaguirre, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México,

Profesor Titular C.  Laboratorio de Rumiología y Metabolismo Nutricional. Facultad de Estudios Superiores-Cuautitlán UNAM

References

Abbas, A. K., A. H. Lichtman, and S. Pillai. 1999. Inmunología básica: funciones y trastornos del sistema inmunitario. Barcelona. España Elsevier.

Alarcón, P., M. González, and C. Castro, E. 2016. Rol de la microbiota gastrointestinal en la regulación de la respuesta inmune. Revista Médica de Chile, 144: 910-916. https://doi.org/10.4067/S0034-98872016000700013

Amin, N., and J. Seifert. 2021. Dynamic progression of the calf’s microbiome and its influence on host health. Computational and Structural Biotechnology Journal, 19: 989-1001. https://doi.org/10.1016/j.csbj.2021.01.035

Bautista-Garfias, C., and M. Gualito. 2005. Role of toll-like receptors in innate immunity and their implication in veterinary medicine. Veterinaria México, 36: 453-468.

Beltrán, L. 2011. Inmunidad del becerro recién nacido. (Tesis de grado). Universidad de Cuenca. https://dspace.ucuenca.edu.ec/handle/123456789/3061

Bushati, N., M. Cohen. 2007. microRNA functions. Annual Review of Cell and Developmental Biology, 23: 175-205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406

Chase, C. 2018. Enteric Immunity: Happy Gut, Healthy Animal. Veterinary Clinics of North America: Food Animal Practice, 34: 1-18. https://doi.org/10.1016/j.cvfa.2017.10.006

Chokeshaiusaha, K., T. Sananmuang, D. Puthier, and C. Nguyen. 2018. An innovative approach to predict immune-associated genes mutually targeted by cow and human milk microRNAs expression profiles. Veterinary world, 11: 1203-1209. https://doi.org/10.14202/vetworld.2018.1203-1209

Concha, C. 2007. La inmunidad en la vaca lechera como factor relevante en la lucha contra la mastitis. Departamento de producción animal. Universidad de Chile. Santiago. Chile.

Dalmasso, G., T. Nguyen, Y. Yan, H. Laroui, M. A. Charania, S. Ayyadurai, and V. Sitaraman. 2011. Microbiota modulate host gene expression via microRNAs. PLoS One 6: e19293. https://doi.org/10.1371/journal.pone.0019293

Delgado, R. 2013. La producción de leche: Un reto actual para empresas del mañana 2° Pre Congreso IASA, 13 Congreso Internacional AMVEB Laguna. Universidad Autónoma Agraria Antonio Narro, Unidad Laguna. Coahuila, México. Recuperado de [https://www.ganaderia.com/destacado/Inmunidad-e-inmunosupresion-en-bovinos-lecheros]

Do, D. N., P. L. Dudemaine, B. E. Fomenky, and E. M. Ibeagha-Awemu. 2018. Integration of miRNA and mRNA co-expression reveals potential regulatory roles of miRNAs in developmental and immunological processes in calf ileum during early growth. Cells, 7: 134. https://doi.org/10.3390/cells7090134

Do, D. N., Dudemaine, P. L., Mathur, M., Suravajhala, P., Zhao, X., & Ibeagha-Awemu, E. M. 2021. MiRNA regulatory functions in farm animal diseases, and biomarker potentials for effective therapies. International Journal of Molecular Sciences, 22: 3080.

Eulalio, A., L. Schulte, and J. Vogel. 2012. The mammalian microRNA response to bacterial infections. RNA Biology, 9: 742-750. https://doi.org/10.4161/rna.20018

Flores, F., M. A. Martínez, C. Arenas, A. Covarrubias, and J. L. Reyes. 2007. ¡Silencio mensajeros! Qué son y cómo actúan los microRNAs. Revista de Educación Bioquímica, 26: 135-141.

Gómez, M., M. Morales. 2017. Comunicación bidireccional de la microbiota intestinal en el desarrollo del sistema nervioso central y en la enfermedad de Parkinson. Archivos de Neurociencias, 22: 53-71.

Gómez, M., J. L. Ramon, L. Pérez, J. R. Blanco. 2019. El eje microbiota- intestino- cerebro y sus grandes proyecciones. Revista de Neurología, 68: 111-117. https://doi.org/10.33588/rn.6803.2018223

González-Rascón, A., and V. Mata-Haro. 2015. MicroRNAs: Regulators of TLR2-Mediated Probiotic Immune Responses. MicroRNA, 4: 168-174. https://doi.org/10.2174/2211536605666151208123209

Griffiths, S. 2004. The microRNA registry. Nucleic Acids Research, 32: 109-111. https://doi.org/10.1093/nar/gkj023

Hooper, L. V., D. R. Littman, and A. J. Macpherson. 2012. Interactions between the microbiota and the immune system. Science, 336: 1268-1273. https://doi.org/10.1126/science.1223490

Klein, D., N. M. Quijada, M. Dzieciol, B. Feldbacher, M. Wagner, M. Drillich, S. Schimtz, and E. Mann. 2019. Microbiota of newborn calves and their mothers reveals possible transfer routes for newborn calves’ gastrointestinal microbiota. PloS One, 14: e0220554. https://doi.org/10.1371/journal.pone.0220554

Lawless, N., P. Vegh, C. O'Farrelly, and D. J. Lynn. 2014. The Role of microRNAs in Bovine Infection and Immunity. Frontiers in Immunology, 5: 611. https://doi.org/10.3389/fimmu.2014.00611

Li, M., Chen, W. D., Wang, Y. D. (2020). The roles of the gut microbiota–miRNA interaction in the host pathophysiology. Molecular Medicine, 26(1), 1-9.

Liang, G., N. Malmuthuge, H. Bao, P. Stothard, P. J. Griebel, and L. L. Guan. 2016. Transcriptome analysis reveals regional and temporal differences in mucosal immune system development in the small intestine of neonatal calves. BMC Genomics, 17: 602. https://doi.org/10.1186/s12864-016-2957-y

Liang, G., N. Malmuthuge, T. B. McFadden, H. Bao, P. J. Griebel, P. Stothard, and L. L. Guan. 2014. Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life. PloS One, 9: e92592. https://doi.org/10.1371/journal.pone.0092592

Lugo, A. y Trujillo, K. 2009. MicroRNAs: reguladores clave de la expresión génica. Medicina Universitaria, 11: 187-192.

Malmuthuge, N. 2016. Role of gut microbiota in neonatal calf gut development. (Tesis doctoral). University of Alberta, Edmonton, Canadá.

Malmuthuge, N., and L. L. Guan. 2017. Understanding the gut microbiome of dairy calves: opportunities to improve early-life gut health. Journal of Dairy Science, 100: 5996-6005. https://doi.org/10.3158/jds.2016-12239

Malmuthuge, N., Griebel, P., Guan, L. 2015. The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract. Frontiers in Veterinary Science, 2: 36. https://doi.org/10.3389/fvets.2015.00036

Manzullo, A. 1982. Protección inmunitaria del ternero recién nacido. Jornada Académica 9 y 10 de diciembre. Universidad Nacional de Río Cuarto, Córdoba, p 46-57.

Mayer, M., A. Abenthuma, J. M. Matthes, D. Kleeberger, M. J. Ege, C. Holzel, J. Bauer, and K. Schwaiger. 2012. Development and genetic influence of the rectal bacterial flora of newborn calves. Veterinary Microbiology, 161:179-185. https://doi.org/10.1016/j.vetmic.2012.07.023

Menzies, M., and A. Ingham. 2006. Identification and expression of Toll-like receptors 1–10 in selected bovine and ovine tissues. Veterinary Immunology and Immunopathology, 109: 23-30. https://doi.org/10.1016/j.vetimm.2005.06.014

Miretti, S., C. Lecchi, F. Ceciliani, and M. Baratta. 2020. MicroRNAs as Biomarkers for Animal Health and Welfare in Livestock. Frontiers in Veterinary Science, 7: 578793. Httsp://doi.org/10.3389/fvets.2020.578193

Olguin, A. 2019. Síndrome Diarreico Neonatal. Clinica de Bovinos I. Universidad Nacional Autónoma de México. http://www.ammveb.net/clinica/sindrome_diarreico_neonatal.pdf

Consultado el 22 de septiembre de 2021.

Osorio, J. S. 2020. Gut health, stress, and immunity in neonatal dairy calves: The host side of host-pathogen interactions. Journal of Animal Science and Biotechnology, 11: 1-15. https://doi.org/10.1186/s40104-020-00509-3

Pabón, Y. 2011. MicroRNAs: una visión molecular. Revista de la Universidad Industrial de Santander. Salud, 43: 289-297.

Pejenaute, E., M. Ricote. 2018. Desde el intestino a la piel. Probióticos en la práctica clínica. Sociedad Española de Médicos de Atención Primaria. Editorial IMC. Madrid. España.

Reis de Souza, T. C., G. Mariscal Landín, and K. Escobar García. 2010. Algunos factores fisiológicos y nutricionales que afectan la incidencia de diarreas posdestete en lechones. Veterinaria México, 41: 275-288.

Sarshar, M., Scribano, D., Ambrosi, C. , Palamara, A., Masotti, A. 2020. Fecal microRNAs as innovative biomarkers of intestinal diseases and effective players in host-microbiome interactions. Cancers, 12: 2174. https://doi.org/10.3390/cancers12082174

Sentandreu, R. 2017. El hombre y los microorganismos: el eje cerebro-intestino. Anales de la Real Academia Nacional de Farmacia, 83: 360-370.

Taschuk, R., and J. Griebel. 2012. Commensal microbiome effects on mucosal immune system development in the ruminant gastrointestinal tract. Animal Health Research Reviews, 13: 129-141. https://doi.org/10.1017/S1466252312000096

Wang, W. X., Springer, J. E. 2015. Role of mitochondria in regulating microRNA activity and its relevance to the central nervous system. Neural regeneration research, 10: 1026.

Wang, D., G. Liang, B. Wang, H. Sun, and J. Liu. 2016. Systematic microRNAome profiling reveals the roles of microRNAs in milk protein metabolism and quality: insights on low-quality forage utilization. Scientific Reports, 17: 21194. https://doi.org/.10.1038/srep21194

Williams, M. R., Stedtfeld, R. D., Tiedje, J. M., Hashsham, S. A. 2017. MicroRNAs-based inter-domain communication between the host and members of the gut microbiome. Frontiers in Microbiology, 27: 1896. https://doi.org/10.3389/fmicb.2017.01896

Xiao, C., Rajewsky, K. 2009. MicroRNA control in the immune system: basic principles. Cell, 136: 26-36.

Zhao, Y., Zeng, Y., Zeng, D., Wang, H., Zhou, M., Sun, N., Ni, X. 2021. Probiotics and MicroRNA: Their Roles in the Host–Microbe Interactions. Frontiers in Microbiology, 11, 3363.

Published
2022-12-23
How to Cite
Robles-Rodriguez, Carolina, María Laura González-Dávalos, Armando Shimada, Carla Daniela Robles-Espinoza, and María Ofelia Mora Izaguirre. 2022. “Microbiota-MicroRNAs Interaction, Its Importance in the Development of the Immune System in Calves: Microbiota-MicroRNA Y Sistema Inmune En Becerros”. Latin American Archives of Animal Production 30 (4), 281-91. https://doi.org/10.53588/alpa.300401.
Section
Invited papers