Assessing the impact of Bos taurus x Bos indicus crossbreeding and postmortem technologies on the eating quality of loins from pasturefinished young bulls

  • Tomas Riera-Sigala Escuela de Ingeniería de Producción Animal, Universidad Rafael Urdaneta
  • Nelson Huerta-Leidenz Department of Animal and Food Sciences, Texas Tech University https://orcid.org/0000-0003-3476-6584
  • Argenis Rodas-González Department of Animal Science, Faculty of Agricultural & Food Sciences, University of Manitoba.
  • Margarita Arispe Zubillaga Matadero Industrial Centro Occidental C.A, Km 6, Barquisimeto-Yaritagua
  • Nancy C. Jerez Timaure Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile https://orcid.org/0000-0003-3894-2936
Keywords: beef, palatability, crossbredeeng, electrical stimulation, aging

Abstract

This experiment aimed to evaluate the effects of Brahman crossbreeding and postmortem technologies (electrical stimulation and vacuum aging) on eating quality of loins from pasture-finished bulls. Fifty yearling bulls representing five Brahman-influenced types (n = 10 each): Brahman (BRAH), F1-Angus (F1ANG), F1-Chianina (F1CHI), F1-Romosinuano (F1ROM), and F1-Simmental (F1SIM) were supplemented on pasture until reaching a desirable conformation at a suitable live weight of ca. 480 kg. All carcasses were classified as “Bullocks” according to U.S. standards. Carcass’s right sides were subjected to high-voltage electrical stimulation (ES) while the left sides were not stimulated (NOES). Longissimus lumborum (LL) steaks from ES and NOES carcasses were allotted either to the vacuum aging control treatment for 2 d (NOAGING) or 10 d (AGING).  LL steaks were evaluated for Warner-Bratzler shear force (WBSF) and sensory traits by trained panelists. No differences in WBSF, juiciness, or flavor ratings were detected among breed types (P > 0.05). Sensory ratings for tenderness-related traits varied little with breed type (P < 0.05). Steaks from F1ANG received higher ratings for muscle fiber tenderness, overall tenderness, and amount of connective tissue, and differed (P < 0.05) from those of F1ROM and F1SIM which received the lowest ratings. Bullock loins were more responsive to ES+AGING in WBSF reduction and desirable tenderness ratings than other postmortem treatments (P < 0.05) by reaching a greater proportion (72%) of “tender” (WBSF < 40.1 N) steaks than AGING (48%), ES (36%), and NOES-NOAGING (24%) samples (P < 0.01). Tenderness of bullock loin steaks is marginally improved by crossbreeding; therefore, the application of ES+AGING is necessary to ensure a higher proportion of tenderloin steaks.

Downloads

Download data is not yet available.

Author Biography

Nancy C. Jerez Timaure, Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile

Ing. Agr. M. Sc. Ph. D.

References

Adeyemi, K. D., A. Q. Sazili. 2014. Efficacy of carcass electrical stimulation in meat quality enhancement: A review. Asian-Australasian Journal of Animal Science, 27: 447-456. https://doi.org/10.5713/ajas.2013.13463

AMSA. 2016. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat. American Meat Science Association Educational Foundation. 105pp.

Anaruma, R. J., L. G. Reis, P. E. de Felício, S. B. Pflanzer, S. Rossi, M. A. Zanetti, N. R. B. Cônsolo, S. L. Silva, A. Saran Netto. 2020. Castration age and growth, meat production, and meat quality of Nellore male cattle. Animal Production Science, 60: 725–731 https://doi.org/10.1071/AN18460

Barros Moreira, F. B., N. E. Souza, M. Matsushita, I. N. Prado, and W. G. Nascimento. 2003. Evaluation of carcass characteristics and meat chemical composition of Bos indicus x Bos taurus crossbred steers finished in pasture systems. Brazilian Archives of Biology and Technology, 46: 609-616. https://doi.org/10.1590/S1516-89132003000400016.

COVENIN. 1983. Comisión Venezolana de Normas Industriales. Norma venezolana 2072-83. Ganado bovino. Inspección Postmortem. p.10. Caracas, Venezuela.

Decreto Presidencial No. 1896. 1997. Gaceta Oficial de la República de Venezuela No 36.242. Venezuela República Bolivariana. p. 4. Caracas, Venezuela.

Diniz, F. B., S. D. J. Villela, M. H. F. Mourthé, P. V. R. Paulino, C. A. Boari, J. S. Ribeiro, J. A. Barroso, A. V. Pires, P. G. M. A. Martins. 2016. Evaluation of carcass traits and meat characteristics of Guzerat-crossbred bulls. Meat Science, 112:58‐62. https://doi.org/10.1016/j.meatsci.2015.10.014

Dolezal, H. G., G. C. Smith, J. W. Savell, Z. L. Carpenter. 1982. Comparison of subcutaneous fat thickness, marbling, and quality grade for predicting palatability of beef. Journal of Food Science, 47: 397-401.

Ferguson, D. M., S. T. Jiang, H. Hearnshaw, S.R. Rymill, J.M. Thompson. 2000. Effect of electrical stimulation on protease activity and tenderness of M. longissimus from cattle with different proportions of Bos indicus content. Meat Science, 55:265-272. https://doi.org/10.1016/S0309-1740(99)00131-X

Fondo Nacional de Ciencia, Tecnología e Innovación (MCT-FONACIT). 2002. Código de Bioética y Bioseguridad, 2nd ed.; Ministerio del Poder Popular para Ciencia, Tecnología e Industrias Intermedias y el Fondo Nacional de Ciencia, Tecnología e Innovación: Caracas, Venezuela, pp. 1–35. Available online: https://cupdf.com/download/bioetica-fonacit (accessed on 10 March 2020).

Gama, L. T., M. C. Bressan, E. C. Rodrigues, L. V. Rossato, O. C. Moreira, S. P. Alves, R. J. B. Bessa. 2013. Heterosis for meat quality and fatty acid profiles in crosses among Bos indicus and Bos taurus finished on pasture or grain. Meat Science, 93: 98-104. https://doi.org/10.1016/j.meatsci.2012.08.005

Gursansky, B., J. M. O’Halloran, A. Egan, C. E. Devine. 2010. Tenderness enhancement of beef from Bos indicus and Bos taurus cattle following electrical stimulation. Meat Science, 86: 635-641. https://doi.org/10.1016/j.meatsci.2010.05.002

Huerta-Leidenz, N., N. Jerez-Timaure, A. Rodas-González, E. Márquez, M. Arispe, J. M. Rivero. 1997. Preliminary observations on the use of postmortem technologies to improve quality of beef derived from Venezuelan cattle differing in breed type, sex condition, and age. Revista Científica FCV-LUZ, 7:123-132. https://www.produccioncientificaluz.org/index.php/cientifica/article/view/14284

Huerta-Leidenz, N., N. Jerez-Timaure, O. Morón-Fuenmayor, E. R. Urdaneta, R. Caro. 1996. Experiences during training of a descriptive taste panel at a packing house of Venezuela. Archivos Latinoamericanos de Nutrición, 46:47-53. https://www.alanrevista.org/ediciones/1996/1/art-10/

Huerta-Leidenz, N., A. Rodas-González, G. C. Smith. 2004. Effect of vacuum aging and influence of sire on palatability of beef longissimus from grass-fed F1 Senepol x Zebu bulls. Revista Científica FCV-LUZ, 14:1-14. https://www.produccioncientificaluz.org/index.php/cientifica/article/view/15053

Huerta-Leidenz, N., A. Ruiz-Flores, J. Valerio-Hernández, N. Jerez-Timaure, A. Rodas-González. 2020. Bullock carcass performance trends in Brahman and F1 crosses fattened on tropical pastures. NACAMEH, 14: 16–30. https://www.doi.org/10.24275/uam/izt/dcbs/nacameh/2020v14n1/Huerta

Huerta-Leidenz, N., N. Jerez-Timaure, S. Godoy, C. Rodríguez-Matos, O. Araujo-Febres. 2021. Fattening performance and carcass traits of implanted and supplemented grass-fed bulls. Revista Científica FCV-LUZ, 31 (2): 53-60. https://www.produccioncientificaluz.org/index.php/cientifica/article/view/36161

Jeremiah, L. E. 1996. The influence of subcutaneous fat thickness and marbling in beef. Food Research International, 29: 513-520. https://doi.org/10.1016/S0963-9969(96)00049-X

Jerez-Timaure, N., G., Martínez, M., González. 2015. Commercial value of beef carcass and meat from Senepol x Brahman bulls in Venezuela. Revista Científica FCV-LUZ, 25(6):462-470.

Jerez-Timaure, N., N. Huerta-Leidenz. 2009. Effects of breed type and supplementation during grazing on carcass traits and meat quality of bulls fattened on improved savannah. Livestock Science, 121:219-226. https://doi.org/10.1016/j.livsci.2008.06.015

Leal-Gutiérrez, J. D., M. A. Elzo, D. D. Johnson, T. L. Scheffler, J. M. Scheffler, R. G. Mateescu. 2018. Association of μ-calpain and calpastatin polymorphisms with meat tenderness in a Brahman-Angus population. Frontiers in Genetics, 9: 1-10. https://doi.org/10.3389/fgene.2018.00056

Li, C. B., J. Li, G. H. Zhou, R. Lametsch, P. Ertbjerg, D. A. Bruggemann, H. G. Huang, A. H. Karlsson, M. Hviid, K. Lundstrom. 2012. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation, and meat tenderization in beef. Journal of Animal Science, 90: 1638−1649. https://doi.org/10.2527/jas.2011-4514

Montero, A., N. Huerta‐Leidenz, A. Rodas-González, L. Arenas de Moreno. 2014. Fabrication, and variation of the cut-out yield of beef carcasses in Venezuela: Anatomical description of the process and equivalency of cut nomenclature to North American counterparts. NACAMEH, 8:1-22. http://www.doi.org/10.24275/uam/izt/dcbs/nacameh/2014v8n1/Montero

Nair, M. N., A. C. V. C. S. Canto, G. Rentfrow, S. P. Suman. 2019. Muscle-specific effect of aging on beef tenderness. LWT, 100:250-252. https://doi.org/10.1016/j.lwt.2018.10.038

Pereira, A. S. C., F. Baldi, R. D. Sainz, B. L. Utembergue, H. L. J. Chiaia, C. U. Magnabosco, F. R. Manicardi, F. R. C. Araujo, C. F. Guedes, R. C. Margarido, P. R. Leme, P. J. A. Sobral. 2015. Growth performance, and carcass and meat quality traits in progeny of Poll Nellore, Angus, and Brahman sires under tropical conditions. Animal Production Science, 55:1295-1302. https://doi.org/10.1071/AN13505

Pflanzer, S. B., C. L. Gomes, P. E. de Felicio. 2019. Delayed carcass chilling improves tenderness of the beef gluteus medius muscle. Pesquisa Agropecuaria Brasileira, v.54, e00099. https://doi.org/10.1590/ S1678-3921.pab2019.v54.00099.

Phelps, K. J., D. D. Johnson, M. A. Elzo, C. B. Paulk, J. M. Gonzalez. 2017. Effect of Brahman genetics on myofibrillar protein degradation, collagen crosslinking, and tenderness of the longissimus lumborum. Journal of Animal Science, 95:5397-5406. https://doi.org/10.2527/jas2017.2022

Riera-Sigala, T., N. Huerta-Leidenz, N. Jerez-Timaure, A. Rodas-González, J. Ordoñez-Vela, A. Moya. 2021. Preliminary observations on carcass traits and meat yield of five types of Brahman-influenced grass-fed bulls. Archivos Latinoamericanos de Producción Animal, 29(1-2): 67-78. https://doi.org/10.53588/alpa.291208

Riera-Sigala, T., A. Rodas-González, C. Rodríguez-Matos, J. Avellaneda-Barbarito, N. Huerta-Leidenz. 2004. Rasgos de crecimiento y pesos en canal de toros Brahman puros y F1 Brahman x Bos taurus criados y cebados semi-intensivamente en sabana mejorada. Archivos Latinoamericanos de Producción Animal, 12: 66-72. https://ojs.alpa.uy/index.php/ojs_files/article/view/19

Riley, D. G., C. C. Chase Jr., S. W. Coleman, W. A. Phillips, M. F. Miller, J. C. Brooks, D. D. Johnson, T. A. Olson. 2012. Genetic effects on carcass quantity, quality, and palatability traits in straightbred and crossbred Romosinuano steers. Journal of Animal Science, 90(7):2159. https://doi.org/10.2527/jas.2011-4471

Rodas-González, A., J. Vergara-López, L. Arenas de Moreno, N. Huerta-Leidenz, M. Leal, M. F. Pirela. 2007. Effect of supplementation regimes and vacuum ageing on palatability of beef longissimus from Criollo Limonero steers fattened on pasture. Revista Científica FCV-LUZ, 17:1-8.

Rodas-González, A., N. Huerta-Leidenz, N. Jerez-Timaure, M. F. Miller. 2009. Establishing tenderness thresholds of Venezuelan beef steaks using consumer and trained sensory panels. Meat Science, 83:218-223. https://doi.org/10.1016/j.meatsci.2009.04.021

Rodríguez, J., J. Unruh, M. Villarreal, O. Murillo, S. Rojas, J. Camacho, J. Reinhardt, C. 2014. Carcass and meat quality characteristics of Brahman cross bulls and steers finished on tropical pastures in Costa Rica. Meat Science, 96, 1340-1344. https://doi.org/10.1016/j.meatsci.2013.10.024

Sami, A., E. Mills, J. F. Hocquette. 2015. Relationships between DNAJA1 expression and beef tenderness: Effects of electrical stimulation and postmortem aging in two muscles. International Journal of Agricultural Biology, 17:815-820. doi:10.17957/IJAB/14.0024

SAS. SAS/STAT User´s Guide. (Release 9.4). Cary, NC, USA: SAS Institute, Inc.; 2012.

Savell, J.W., S.L. Mueller, B.E. Baird. 2005. The chilling of carcasses. Meat Science, 70: 449-459. https://doi.org/10.1016/j.meatsci.2004.06.027

Schutt, K. M., H. M. Burrow, J. M. Thompson, B. M. Bindon. 2009. Brahman and Brahman crossbred cattle growth on pasture and in feedlots in subtropical and temperate Australia. 2. Meat quality and palatability. Animal Production Science, 49: 452-460. https://doi.org/10.1071/EA08082

Seideman, S. C., H. R. Cross, L. D. Crouse. 2007. Variations in the sensory properties of beef as affected by sex condition, muscle, and postmortem aging. Journal of Food Quality, 12(1): 39-58. https://digitalcommons.unl.edu/hruskareports/66/

Torrecilhas, J. A., E. San Vito, G. Fiorentini, P. de Souza Castagnino, T. A. Simioni, J. F. Lage, T. T. Berchielli. 2021. Effects of supplementation strategies during the growing phase on meat quality of beef cattle finished in different systems. Livestock Science, 247:104465. https://doi.org/10.1016/j.livsci.2021.104465

USDA. 2017. Official United States Standards for Grades of Carcass Beef. Washington, DC. United States Department of Agriculture, Agricultural Marketing Service.

Vilella, G. F., C. L. Gomes, C. T. Battaglia, M. T. B. Pacheco, V. S. N. da Silva, A. Rodas-González, S. B. Pflanzer. 2019. Effects of combined wet-and dry-aging techniques on the physicochemical and sensory attributes of beef ribeye steaks from grain-fed crossbred zebu steers. Canadian Journal of Animal Science, 99(3):497-504. https://doi.org/10.1139/cjas-2018-0127

Waritthitham, A., C. Lambertz, H. J. Langholz, M. Wicke, M. Gauly. 2010. Assessment of beef production from Brahman × Thai native and Charolais × Thai native crossbred bulls slaughtered at different weights. II: Meat quality. Meat Science, 85(1):196-200. https://doi.org/10.1016/j.meatsci.2009.12.025

Warner, R.D., P.L. Greenwood, D.W. Pethick, D.M. Ferguson. 2010. Genetic and environmental effects on meat quality. Meat Science, 86:171-183. https://doi.org/10.1016/j.meatsci.2010.04.042

Wright, S. A., P. Ramos, D. D. Johnson, J. M. Scheffler, M. A. Elzo, R. G. Mateescu, A. L. Bassa, C. C. Carra, T. L. Schefflera. 2018. Brahman genetics influence muscle fiber properties, protein degradation, and tenderness in an Angus-Brahman multi-breed herd. Meat Science, 135:84-93. https://doi.org/10.1016/j.meatsci.2017.09.006

Published
2022-07-25
How to Cite
Riera-Sigala, Tomas, Nelson Huerta-Leidenz, Argenis Rodas-González, Margarita Arispe-Zubillaga, and Nancy C. Jerez Timaure. 2022. “Assessing the Impact of Bos Taurus X Bos Indicus Crossbreeding and Postmortem Technologies on the Eating Quality of Loins from Pasturefinished Young Bulls”. Latin American Archives of Animal Production 30 (3), 263-73. https://doi.org/10.53588/alpa.300310.
Section
Original paper