Methane emissions from rams fed kikuyu hay or kikuyu-lotus hay mixture

Keywords: feeding systems, greenhouse gases, methanogenesis, tannin-contain legumes


Dietary inclusion of contain-tannin legumes may reduce enteric methane emission in ruminants. To evaluate methane emissions from sheep fed a kikuyu grass (Cenchrus clandestinus) diet partially substituted with lotus (Lotus uliginosus), twelve growing rams, with 23±2 kg average liveweight, were assigned randomly to two treatments and with three measurement periods in a switchover design. Treatments consisted of 100% kikuyu hay or 70% kikuyu hay: 30% lotus hay and with 6 rams per treatment. Each of three periods lasted 20 d, where the first 15 d were for acclimatization and the last 5 d for measurements. Rams were placed in metabolic cages and fed once a day (8 AM) at 90% of their voluntary feed intake, with free access to drinking water. Feed intake, fecal production and feed digestibility were determined at each period. Methane production was measured for each treatment group of 6 rams using the poly-tunnel technique. Legume addition reduced total methane production (27.6 vs. 23.1 g/animal; p<0.01), methane production per dry matter intake (DMI) (18.8 vs. 12.2 g/kg DMI; p<0.01), methane production per digestible OM (DOM) (36.1 vs. 23.4 g/kg DOM; p<0.01) and methane production per digestible NDF (DNDF) (43.5 vs 34.0 g/kg DNDF; p<0.01). In conclusion, lotus inclusion in pasture systems could be a suitable legume to reduce methane emissions in grazing systems.


Download data is not yet available.


Annison, E. F. and D.G. Armstrong. 1970. Physiology of digestion and metabolism in the ruminant. Ed: Oriel Press, Ltd. Newcastle, England.

Archimède, H., M. Eugène, C. Magdeleine, M. Boval, C. Martin, D. Morgavi, P. Lecomte and M. Doreau. 2011. Comparison of methane production between C3 y C4 grasses and legumes. Anim. Feed Sci. Tech. 166-167: 59-64.

AOAC. 2005. Official methods of analysis. 18th ed. Ed. Association of Official Agricultural Chemists. Washington D.C. USA.

Bhatta, R., Y. Uyeno, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal population. J. Dairy Sci. 92: 5512-5522.

Betancourt, M., M. Martínez de Acurero, T. Clavero, R. Razz, S. Pietrosemoli y O. Araujo-Febres. 2003. Efecto de la melaza, ácido fórmico y tiempo de fermentación sobre el pH y temperatura en microsilos de Leucaena leucocephala. Rev. Fac. Agron. (LUZ). 20: 493-501.

Blaxter K., and J. Clapperton. 1965. Prediction of the amount of methane produced by ruminants. Brit. J. Nutr. 19: 511-522.

Carulla, J., M. Kreuzer, A. Machmüller and H. Hess. 2005. Supplementation of Acacia mearnsii tannin decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agr. Res. 56: 961-970.

Carulla, J., and E. Ortega. 2016. Sistemas de producción lechera en Colombia: Retos y oportunidades. Arch. Latinoam. Prod. Anim. 24: 83-87.

Castro, E., J. Mojica, J. León, M. Pabón, J. Carulla and E. Cárdenas. 2008. Productividad de pasturas y producción de leche bovina bajo pastoreo de gramínea y gramínea + Lotus uliginosus en Mosquera, Colombia. Rev. Med. Vet. Zoot. 55: 9-21.

Gerber, P., H. Steinfeld, B. Henderson, A. Mottet, C. Opio, J. Dijkman, A. Falcucci and G. Tempio. 2013, Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO). Roma, Italia.

Hess, H., L. Monsalve, C. Lascano, J. Carulla, T. Díaz and M Kreuzer. 2003. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust. J. Agr. Res. 54: 703-713.

Janssen, P. 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Tech. 160: 1-22.

Johnson, K., and D.E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73: 2483-2492.

Lee, J., S. Woodward, G. Waghorn and D. Clark. 2004. Methane emissions by dairy cows fed increasing proportions of white clover (Trifolium repens) in pasture. Pr. N. Z. Grassl. Assoc. 66: 151-155.

Lopes, J., L. de Matos, M. Harper, F. Giallongo, J. Oh, D. Gruen, S. Ono, M. Kindermann, S. Duval and A. Hristov. 2016. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows. J. Dairy Sci. 99: 5335-5344.

Lovett, D., D. McGilloway, A. Bortolozzo, M. Hawkins, J. Callan, B. Flynn and F. O´Mara. 2005. In vitro fermentation patterns and methane production as influenced by cultivar and season of harvest of Lolium perenne L. Grass Forage Sci. 61: 9-21.

Lovett, D., A. Bortolozzo, P. Conaghan, P. O´Kiely and F. O´Mara. 2004. In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass Forage Sci. 59: 227-232.

Martínez, R., N. Martínez and M. Martínez. 2011. Diseño de experimentos en ciencias agropecuarias y biológicas con SAS, SPSS, R y Statistix. 1st Edition. Ed: Fondo Nacional Universitario. Bogotá, Colombia

Makkar, H. 2016. Smart livestock feeding strategies for harvesting triple gain – the desired outcomes in planet, people and profit dimensions: a developing country perspective. Anim. Prod. Sci. 56: 519-534.

McCaughey, W., K. Wittenberg and D. Corrigan. 1999. Impact of pasture on methane production by lactating beef cows. Can. J. Anim. Sci. 79: 221-226.

Molina, I., E. Angarita, O. Mayorga, J. Chará and R. Barahona. 2016, Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet base don Cynodon plectostachyus. Livest. Sci. 185: 24-29.

Morales, A., J. León, E. Cárdenas, G. Afanador and J. Carulla. 2013, Composición química de la leche, digestibilidad in vitro de la materia seca y producción en vacas alimentadas con gramíneas solas o asociadas con Lotus uliginosus. Rev. Med. Vet. Zoot. 60: 32-48.

Moss, A., J. Jouany and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zoot. 49: 231-253.

Murphy, M., R. Baldwin and L. Koong. 1982. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J Anim. Sci. 55: 411-421.

Newbold, C., E Ramos. 2020. Ruminal microbiome and microbial metabolome: effects of diet and ruminant host. Animal. 14:78-86.

Parra, D., and M. Avila. 2010. Determinación de los parámetros fisiológicos y dinámica ruminal de bovinos en condiciones de poli-túnel para evaluar emisiones de metano en trópico alto y bajo colombiano. Facultad de Ciencias Agropecuarias. Universidad de Cundinamarca. Fusagasugá, Colombia.

Patra, A., and J. Saxena. 2010. Review: A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry. 71: 1198-1222.

Pinares-Patiño, C., J. McEwan, K. Dodds, E. Cardenas, R. Hegarty, J. Koolaard and H. Clark. 2011. Repeatability of methane emissions from sheep. Anim. Feed Sci. Tech. 166: 210-218.

Pinares-Patiño, C., G. Waghorn, A. Machmüller, B. Vlaming, G. Molano, A. Cavanagh and H. Clark. 2007. Methane emissions and digestive physiology of non-lactating dairy cows fed pasture forages. Can J. Anim. Sci. 87: 601-613.

Pinares-Patiño, C., M. Ulyatt, K. Lassey, T. Barry and C. Holmes. 2003. Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed Lucerne hay. J. Agr. Sci. 140: 205-214.

Ribeiro-Filho, H., R. Delagarde and J. Peyraud. 2005. Herbage intake and milk yield of dairy cows grazing perennial ryegrass swards or white clover/perennial ryegrass swards at low and medium herbage allowance. Anim. Feed Sci. Tech. 119: 13-27.

Stürm, C., T. Tiemann, C. Lascano, M. Kreuzer and H. Hess. 2007. Nutrient composition and in vitro ruminal fermentation of tropical legume mixtures with contrasting tannin contents. Anim. Feed Sci. Tech. 138: 29-46.

Tavendale, M., L. Meagher, D. Pacheco, N. Walker, G. Attwood and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Tech. 123-124: 403-419.

Terrill, T., A. Rowan, G. Douglas and T. Barry. 1992. Determination of extractable and bound condensed tannin concentration in forage plants, protein concentrated meals and cereal grains. J. Sci. Food Agr. 58: 321-329.

Tiemann, T., C. Lascano, H. Wettstein, A. Mayer, M. Kreuzer and H. Hess. 2008a. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing labs. Animal. 2: 790-799.

Tiemann, T., C. Lascano, M. Kreuzer and H. Hess. 2008b. The ruminal degradability of fiber explains part of the low nutritional value and reduced methanogenesis in highly tanniferous tropical legumes. J. Sci. Food Agr. 88:1794-1803.

Van Soest, P., J. Robertson and B. Lewis. 1991. Methods for dietary fiber, neutral fiber and no starch polysaccharides in relation to nutrition. J. Dairy Sci. 74: 3583-3597.

Vargas, J., A. Sierra, J. Benavidez, Y. Avellaneda, O. Mayorga and C. Ariza. 2018a. Establecimiento y producción de raigrás y trébol en dos regiones del trópico alto colombiano. Agron. Mesoam. 29:177-191.

Vargas, J., M. Pabón and J. Carulla. 2018b. Methane production from four forages at three maturity stages in a ruminal in vitro system. Rev. Colomb. Cienc. Pecu. 31: 120-129.

Vargas, J., M. Pabón and J. Carulla. 2014. Producción de metano in vitro en mezcla de gramíneas-leguminosas del trópico alto colombiano. Arch. Zootec. 63: 397-407.

Waghorn, G. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production - Progress and challenges. Anim. Feed Sci. Tech. 147: 116-139.

Waghorn, G., H. Clark, V. Taufa and A. Cavanagh. 2007. Monensin controlled release capsules for improved production and mitigating methane in dairy cows fed pasture. Proc. New. Zeal. Soc. An. 67: 266-271.

Woodward, S., G. Waghorn and P. Laboyrie. 2004. Condensed tannins in birdsfoot trefoil (Lotus corniculatus) reduce methane emissions from dairy cows. Proc. New. Zeal. Soc. An. 64: 160-164.

Woodward, S., G. Waghorn, M. Ulyatt and K. Lassey. 2001. Early indications that feeding Lotus will reduce methane emissions from ruminants. Proc. New. Zeal. Soc. An. 61: 23-26.

How to Cite
Vargas, Juan, Martha Lucia Pabon, and Juan Evangelista Carulla. 2021. “Methane Emissions from Rams Fed Kikuyu Hay or Kikuyu-Lotus Hay Mixture”. Latin American Archives of Animal Production 29 (1-2), 1-9.
Original paper