Seroconversion to BVDV in cows coinfected with BLV and BHV-1: basis of colostrogenesis and effect of persistent infection caused by BVDV

Keywords: colostrum, immunosuppression, vaccination, bovine, immunity

Abstract

Bovine viral diarrhea virus (BVDV), enzootic bovine leukosis virus (EBLV), and bovine herpesvirus-1 (BHV-1) are very important pathogens in specialized dairies due to the negative impact on productive and reproductive parameters, as well as by the immunosuppressive effect they cause. BVDV usually causes transient infection and immunosuppression. Meanwhile, EBLV and BHV-1 cause chronic and persistent infection and immunosuppression, which reduces the quality of colostrum and promotes failure of passive transfer of immunity. Vaccination with BVDV is essential to reduce its incidence and enrich colostrum during colostrogenesis, however, vaccination programs are controversial. This study evaluated whether the change in the vaccination program using attenuated live virus at one or two doses modified the serological status against BVDV in cows infected with EBLV and HVB-1. A BVDV vaccination trial using the EXPRESS® FP 10-HS vaccine was conducted from November 8 to December 20, 2018. The study included 20 BVDV seronegative Holstein cows but coinfected with EBLV and HVB-1. The health status and follow-up of the seroconversion of each cow was established at 0, 21 and 42 days post-vaccination by means of enzyme-linked immunosorbent tests, as well as polymerase chain reaction or sequencing to confirm doubtful cases. The BVDV vaccination program was very efficient in achieving seroconversion independently of the dose, except in one animal with persistent infection. Likewise, the presence of EBLV and BHV-1 did not inhibit the production of antibodies. The information obtained suggests that mobilization of antibodies against BVDV to colostrum would occur without difficulty in coinfected animals that do not experience persistent infection with BVDV.

Downloads

Download data is not yet available.

References

Barrett, D., M. Parr, J. Fagan, A. Johnson, J. Tratalos, F. Lively, M. Diskin, and D. Kenny. 2018. Prevalence of bovine viral diarrhoea virus (BVDV), bovine herpesvirus 1 (BHV 1), leptospirosis and neosporosis, and associated risk factors in 161 Irish beef herds. BMC Veterinary Research 14:8.

Bilge-Dagalp, S., K. Can-Sahna, Y. Yildirim, T. Karaoglu, F. Alkan, and I. Burgu. 2008. Effects of bovine leucosis virus (BLV) infection on the bovine viral diarrhea virus (BVDV) and bovine herpes virus 1 (BHV1) seroprevalences in dairy herds in Turkey. Revue de Médecine Vétérinaire 159 (suppl. 7):385-390.

Blagitz, M.G., F.N. Souza, C.F. Batista, L.F.F. Azevedo, E.M.R. Sanchez, S.A. Diniz, M.X. Silva, J.P. Haddad, and A.M.M.P. Della Libera. 2017. Immunological implications of bovine leukemia virus infection. Research in Veterinary Science 114:109-116. https://doi.org/10.1016/j.rvsc.2017.03.012

Boehringer Ingelheim. 2019. Express® FP: protect dairy cattle from reproductive disease with a modified-live virus vaccine. ©2019 Boehringer Ingelheim Animal Health USA Inc., Duluth, GA. US-BOV-0032-2019. https://www.bi-vetmedica.com/species/cattle/products/express_fp/express%C2%AE-fp-dairy.html

Brunner, N., S. Groeger, J.C. Raposo, R.M. Bruckmaier, and J.J. Gross. 2019. Prevalence of subclinical ketosis and production diseases in dairy cows in Central and South America, Africa, Asia, Australia, New Zealand, and Eastern Europe. Translational Animal Science 3:84-92. https://doi.org/10.1093/tas/txy102

Chamorro, M., P. Walz, D. Haines, T. Passler, T. Earleywine, A. Roberto, R. Palomares, K. Riddell, P. Galik, Y. Zhang, and M. Givens. 2014. Comparison of levels and duration of detection of antibodies to bovine viral diarrhea virus 1, bovine viral diarrhea virus 2, bovine respiratory syncytial virus, bovine herpesvirus 1, and bovine parainfluenza virus 3 in calves fed maternal colostrum or a colostrum-replacement product. Canadian Journal of Veterinary Research 78:81-88. https://www.ingentaconnect.com/content/cvma/cjvr/2014/00000078/00000002/art00001

Chase, C., D.J. Hurley, and A.J. Reber. 2008. Neonatal immune development in the calf and its impact on vaccine response. Veterinary Clinics of North America: Food Animal Practice 24:87-104. https://doi.org/10.1016/j.cvfa.2007.11.001

Castro, N., J. Capote, R.M. Bruckmaier, and A. Argüello. 2011. Management effects on colostrogenesis in small ruminants: a review. Journal of Applied Animal Research 39 (suppl. 2):85-93. https://doi.org/10.1080/09712119.2011.581625

Cho, Y.I., and K.J. Yoon. 2014. An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. Journal of Veterinary Science 15 (suppl. 1):1-17.

Decaro, N., R. Sciarretta, M.S. Lucente, V. Mari, F. Amorisco, M.L. Colaianni, P. Cordioli, A. Parisi, R. Lelli, and C. Buonavoglia. 2012. A nested PCR approach for unambiguous typing of pestiviruses infecting cattle. Molecular and Cellular Probes 26:42-46. https://doi.org/10.1016/j.mcp.2011.11.003

De Paula, M.R., G.S. Slanzon, N. Sobreira, and C.M.M. Bittar. 2019. Passive transfer of immunity in dairy calves with additional consumption of immunoglobulin through colostrum supplement: effects in health and performance. Revista Brasileira de Saúde e Produção Animal 20(01-13):e0242019.

Di Rienzo, J.A., F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada, and C.W. Robledo. 2011. InfoStat, versión 2018I, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Dunn, A., M. Welsh, A. Gordon, A. Arguello, S.J. Morrison, and B. Earley. 2018. Effect of passive transfer status on response to a glycoprotein E (gE)-negative bovine herpesvirus type 1 (BoHV-1) and bovine respiratory syncytial virus (BRSV) vaccine and weaning stress in pre-weaned dairy calves. Journal of Applied Animal Research 46 (suppl. 1):907-914. https://doi.org/10.1080/09712119.2017.1422257

Factor, C., E. Yus, C. Eiras, M.L. Sanjuan, M. Cerviño, I. Arnaiz, and F.J. Diéguez. 2016. Genetic diversity of bovine viral diarrhea viruses from the Galicia region of Spain. Veterinary Record Open 3:e000196. https://doi.org/10.1136/vetreco-2016-000196

Farias, M.V.N., P.A. Lendez, M. Marin, S. Quintana, L. Martínez-Cuesta, M.C. Ceriani, and G.L. Dolcini. 2016. Toll-like receptors, IFN-γ and IL-12 expression in bovine leukemia virus-infected animals with low or high proviral load. Research in Veterinary Science 107:190-195. https://doi.org/10.1016/j.rvsc.2016.06.016

Frie, M.C., and P.M. Coussens. 2015. Bovine leukemia virus: A major silent threat to proper immune responses in cattle. Veterinary Immunology and Immunopathology 163:103-114. https://doi.org/10.1016/j.vetimm.2014.11.014

Frie, M.C., K.R. Sporer, J.C. Wallace, R.K. Maes, L.M. Sordillo, P.C. Bartlett, and P.M. Coussens. 2016. Reduced humoral immunity and atypical cell-mediated immunity in response to vaccination in cows naturally infected with bovine leukemia virus. Veterinary Immunology and Immunopathology 182:125-135. https://doi.org/10.1016/j.vetimm.2016.10.013

Frie, M.C., K.R. Sporer, O.J. Benitez, J.C. Wallace, C.J. Droscha, P.C. Bartlett, and P.M. Coussens, PM. 2017. Dairy cows naturally infected with bovine leukemia virus exhibit abnormal B- and T-Cell phenotypes after primary and secondary exposures to keyhole limpet hemocyanin. Frontiers in Veterinary Science 4:112.

Frie, M.C., C.J. Droscha, A.E. Greenlick, and P.M. Coussens. 2018. MicroRNAs encoded by bovine leukemia virus (BLV) are associated with reduced expression of B cell transcriptional regulators in dairy cattle naturally infected with BLV. Frontiers in Veterinary Science 4:245.

Givens, M.D., and B.W. Newcomer. 2017. Does modified-live viral vaccine administration to heifers or cows lack substantial risk? AABP Proceedings 50:43-48. https://doi.org/10.21423/aabppro20173276

Glass, E.J., R. Baxter, R.J. Leach, and O.C. Jann. 2012. Genes controlling vaccine responses and disease resistance to respiratory viral pathogens in cattle. Veterinary Immunology and Immunopathology 148:90-99. https://doi.org/10.1016/j.vetimm.2011.05.009

Gómez-Lucía, E., M.M. Blanco, and A. Doménech. 2006. Manual de inmunología veterinaria. Madrid, España, Pearson Educación, S.A., Madrid. 728 p.

Gutiérrez, S.E., E.N. Esteban, C.M. Lützelschwab, and M.A. Juliarena. 2017. Major histocompatibility complex-associated resistance to infectious diseases: the case of bovine leukemia virus infection. INTECH 6:101-126.

Irianingsih, S.H., H. Wuryastuty, R. Wasito, H. Wibawa, F.S. Tjatur-Rasa, and B. Poermadjaja. 2019. Genetic analysis of NS5B gene from bovine viral diarrhea virus-infected cattle in Central and East Java, Indonesia. Veterinary World 12(7):1108-1115. https://doi.org/10.14202/vetworld.2019.1108-1115

Iwan, E., M. Szczotka, and J. Kocki. 2017. Cytokine profiles of dendritic cells (DCs) during infection with bovine leukaemia virus (BLV). Polish Journal of Veterinary Sciences 20 (suppl. 2):221-231. https://doi.org/10.1515/pjvs-2017-0027

Iwersen, M., D. Klein-Jöbstl, M. Pichler, L. Roland, B. Fidlschuster, I. Schwendenwein, and M. Drillich. 2013. Comparison of 2 electronic cowside tests to detect subclinical ketosis in dairy cows and the influence of the temperature and type of blood sample on the test results. J. Dairy Sci.96:7719-7730. http://dx.doi.org/10.3168/jds.2013-7121

Jaworski, J.P., J.M. Sala, and A. Capozzo. 2018. Short communication: Bovine leukemia virus infection in adult cows does not interfere with foot-and-mouth disease vaccination. J. Dairy Sci. 101 (suppl. 12):11247-11250. https://doi.org/10.3168/jds.2018-14922

Jaworski, J.P., M.I. Petersen, H.A. Carignano, and K.G. Trono. 2019. Spontaneous virus reactivation in cattle chronically infected with bovine leukemia virus. BMC Veterinary Research 15:150. https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-019-1908-7

Jiménez, C., J.A. Bonilla, G. Dolz, L.R. Rodriguez, L. Herrero, E. Bolaños, M.R. Cortéz, and E. Moreno. 1995. Bovine leukaemia-virus infection in Costa Rica. Zentralbl Veterinarmed (B) 42 (suppl. 7):385-390. https://doi.org/10.1111/j.1439-0450.1995.tb00726.x

Jones, C. 2019. Bovine herpesvirus 1 counteracts immune responses and immune-surveillance to enhance pathogenesis and virus transmission. Frontiers in Immunology 10:1008. https://doi.org/10.3389/fimmu.2019.01008

Juliarena, M.A., C.N. Barrios, C.M. Lützelschwab, E.N. Esteban, and S.E. Gutiérrez. 2017. Bovine leukemia virus: current perspectives. Virus Adaptation and Treatment 9:13-26. http://hdl.handle.net/11336/66830

Kato, H., R. Sato, M. Oonishi, and M. Tajima. 2015. Comparison of vaccination protocols for bovine herpesvirus type 1 and bovine viral diarrhea virus. Journal of Veterinary Medicine and Research 2 (suppl. 5):1034. https://www.jscimedcentral.com/VeterinaryMedicine/veterinarymedicine-2-1034.pdf

Mair, B., M. Drillich, D. Klein-Jöbstl, P. Kanz, S. Borchardt, L. Meyer, I. Schwendenwein, and M. Iwersen. 2016. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices. BMC Veterinary Research 12:34. https://doi.org/10.1186/s12917-016-0662-3

Maunsell, F. 2014. Cow factors that influence colostrum quality. WCDS Advances in Dairy Technology 26:113-121. https://wcds.ualberta.ca/wcds/wp-content/uploads/sites/57/wcds_archive/Archive/2014/Manuscripts/p%20113%20-%20124%20Maunsell.pdf

Monteiro, F.L., J.F. Cargnelutti, B. Martins, J.G. Noll, R. Weiblen, and E.F. Flores. 2019. Detection of bovine pestiviruses in sera of beef calves by a RT-PCR based on a newly designed set of panbovine pestivirus primers. Journal of Veterinary Diagnostic Investigation 31(2):255-258. https://doi.org/10.1177/1040638719826299

Morrill, K. 2011. Modifying current laboratory methods for rapid determination of colostral IgG concentration and colostral IgG absorption in the neonate. Theses Ph.D. Ames, Iowa, USA, Iowa State University. 276 p. https://doi.org/10.31274/etd-180810-3052

Nikbakht, G., S. Tabatabaei, S. Lotfollahzadeh, B.N. Fasaei, A. Bahonar, and M. Khormali. 2015. Seroprevalence of bovine viral diarrhoea virus, bovine herpesvirus 1 and bovine leukaemia virus in Iranian cattle and associations among studied agents. Journal of Applied Animal Research 43 (suppl. 1):22-25. https://doi.org/10.1080/09712119.2014.883995

Oetzel, G.R. 2015. Dairy herd problem investigation strategies: transition cow troubleshooting (en línea, Preconference seminar 7C). University of Wisconsin, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706. https://www.vetmed.wisc.edu/dms/fapm/fapmtools/2nutr/ketosis.pdf

Pardon, B., K.D. Bleecker, M. Hostens, J. Callens, J. Dewulf, and P. Deprez. 2012. Longitudinal study on morbidity and mortality in white veal calves in Belgium. BMC Veterinary Research 8:26. https://doi.org/10.1186/1746-6148-8-26

Raizman, E.A., R. Pogranichniy, M. Negron, M. Schnur, and D.E. Tobar-Lopez. 2011. Seroprevalence of infectious bovine rhinotracheitis and bovine viral diarrhea virus type 1 and type 2 in non-vaccinated cattle herds in the Pacific Region of Central Costa Rica. Tropical Animal Health and Production 43:773-778. https://doi.org/10.1007/s11250-010-9762-4

Reichel, M.P., S.R. Lanyon, and F.I. Hill. 2018. Perspectives on current challenges and opportunities for bovine viral diarrhoea virus eradication in Australia and New Zealand. Pathogens 7:14. https://doi.org/10.3390/pathogens7010014

Richter, V., K. Lebl, W. Baumgartner, W. Obritzhauser, A. Käsbohrer, and B. Pinior. 2017. A systematic worldwide review of the direct monetary losses in cattle due to bovine viral diarrhoea virus infection. Veterinary Journal 220:80-87. https://doi.org/10.1016/j.tvjl.2017.01.005

Rodrigues, A.P.S., A.A. Fonseca Júnior, G.K. Lima, J.M. Bicalho, R.C. Leite, and J.K.P. Reis. 2019. Molecular detection of bovine immunodeficiency virus (BIV) in bovines from the state of Minas Gerais, Brazil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 71 (suppl. 2):711-714. https://doi.org/10.1590/1678-4162-10495

Rola, M., M.P. Polak, J. Rola, L. Bicka, J.F. Zmudzinski, and J. Kuzmak. 2005. Bovine immunodeficiency virus (BIV) infection in respect to BHV-1, BLV and BVDV coinfections. Medycyna Weterynaryjna 61 (suppl. 3):286-289.

Romero, J.J., G. Dávila, G. Beita, y G. Dolz. 2012. Efecto del estatus serológico al virus de la leucosis enzoótica bovina (BLV) sobre la producción de leche en hatos lecheros de Costa Rica. Revista Ciencias Veterinarias 30(2):43-55. https://www.redalyc.org/journal/436/43642603001/html/

Romero, J.J., G. Dávila, G. Beita, y G. Dolz. 2015. Relación entre el estado serológico a Leucosis Bovina Enzoótica y parámetros reproductivos en hatos lecheros especializados de Costa Rica. Agronomía Costarricense 39 (suppl. 2):7-18. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0377-94242015000200007

Suzuki, S., S. Konnai, T. Okagawa, R. Ikebuchi, A. Nishimori, J. Kohara, C.N. Mingala, S. Murata, and K. Ohashi. 2015. Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection. Veterinary Immunology and Immunopathology 163:115-124. https://doi.org/10.1016/j.vetimm.2014.10.006

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. https://doi.org/10.1093/molbev/mst197

Walz, P.H., M.D. Givens, S.P. Rodning, K.P. Riddell, B.W. Brodersen, D. Scruggs, T. Short, and D. Grotelueschen. 2017. Evaluation of reproductive protection against bovine viral diarrhea virus and bovine herpesvirus-1 afforded by annual revaccination with modified-live viral or combination modified-live/killed viral vaccines after primary vaccination with modified-live viral vaccine. Vaccine 35:1046-1054. https://doi.org/10.1016/j.vaccine.2017.01.006

Wathes, D.C., C.F. Oguejiofor, C. Thomas, Z. Cheng. 2019. Importance of viral disease in dairy cow fertility. Engineering 6(1):26-33. https://doi.org/10.1016/j.eng.2019.07.020

Woolums, A.R. 2014. Vaccinating dry cows and calves: with what, when, and is it effective at protecting the calf? WCDS Advances in Dairy Technology 26:329-336. https://wcds.ualberta.ca/wcds/wp-content/uploads/sites/57/wcds_archive/Archive/2014/Manuscripts/p%20329%20-%20338%20Woolums.pdf

Zhang, S., C. Wood, W. Xue, S.M. Krukenberg, Q. Chen, and H.C. Minocha. 1997. Immune suppression in calves with bovine immunodeficiency virus. Clinical and Diagnostic Laboratory Immunology 4 (suppl. 2):232-235. https://doi.org/10.1128/cdli.4.2.232-235.1997

Published
2020-09-30
How to Cite
Pichardo-Matamoros, Derling, Jorge Alberto Elizondo-Salazar, and Carlos Jiménez-Sánchez. 2020. “Seroconversion to BVDV in Cows Coinfected With BLV and BHV-1: Basis of Colostrogenesis and Effect of Persistent Infection Caused by BVDV”. Archivos Latinoamericanos De Producción Animal 28 (1-2), 39-51. https://ojs.alpa.uy/index.php/ojs_files/article/view/2794.
Section
Original paper