Reproductive records of two rabbit farms in the Tuxtepec-Oaxaca region, Mexico

  • Alfredo Trejo Cordova Universidad Autonoma Metroplitana
  • Demetrio Alonso Ambriz García Universida Autonoma Metropolitana
  • Sergio Ramirez Ordoñez Universidad del Papaloapan
  • Víctor Manuel Meza Villalvazo Universidad del Papaloapan
Keywords: tropical zones, tropics, rabbits, fertility, reproductive performance, Oryctolagus cuniculus


In Mexico, rabbit production is concentrated in states with a temperate climate and an average annual temperature of 20 °C. The aim of this study was assess the productive parameters of two rabbits producing farms located in the region of Tuxtepec, Oaxaca. We analyzed 341 reproductive records (183 farms A and 158 farms B) for the years 2010 and 2011. In farm A, fertility rate was 71.3% and significantly higher than farm B (67.8%; p <0.05). In spring, the lowest incidence of births was observed, while in winter there was the highest number of births (8.7 and 41.9%) were present. The proportion of females in the offspring was significantly higher in both farms (farm A: 54.94%, farm B: 56.14%). In conclusion, despite the adverse tropical conditions for rabbit production, especially in spring, it is possible to achieve acceptable reproductive performance.


Download data is not yet available.


Cheeke, P. R. 1986. Potentials of rabbit production in tropical and subtropical agricultural systems. J. Anim. Sci. 63: 1581-1586.

Cossins, A. R, and R. S. Raynard. 1987. Adaptive responses of animal cell membranes to temperature. In: Bowler K, Fuller BJ (ed.) Temperature and Animal Cells. The Society for Experimental Biology by The Company of Biologists Limited, Cambridge. pp. 95–112.

El-Tohamy, M., M. Kotp and W. E. A, Mohamed. 2012. Semen Characteristics and Oxidative/Antioxidati in Semen and Serum of Male Rabbits Supplemented with Antioxidants during Heat Stress. Ir. J. Appl. Anim. Sci. 2: 175-183.

González-Redonde, P. 2010. Maternal behavior in peripartum influences preweaning kit mortality in cage-bred wild rabbits. World Rabbit Sci. 18: 91-102.

Gonzáles, V. F. J., M. M., Domiguez, P. K. Cruz and M. J. A. Arriaga. 2011. Identificación de estudios y proyectos del sector hídrico: Oaxaca, Puebla y Tlaxcala. Instituto de Ingeniera UNAM.

Lang, U., R. S. Baker., J. Khoury and K. E. Clark. 2000. Effects of chronic reduction in uterine blood flow on fetal and placental growth in the sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279: R53-59.

Hohenboken, W. D., P. R. Cheeke and N. M. Patton. 1983. Breed, heterotic and diet effects on postweaning litter growth and mortality in rabbits. J. Anim. Sci. 57: 1108-1116.

Mesquita de Oliveira, E. 2000. Ambiente y productividad en la cunicultura. Lagomorpha 110: 21-25.

Marai, I. F. M., A. A. Askar and L. B. Bahgat. 2006. Tolerance of New Zealand White and Californian doe rabbits at first parity to the sub-tropical environment of Egypt. Lives. Sci. 104: 165-172.

Matsuzaki, I., K. Hatta and K. Ogino. 2004. Physiological involvement of placental endothelin-1 and prostaglandin F2alpha in uteroplacental circulatory disturbance in pregnant rats exposed to heat stress. Can. J. Physiol. Pharm. 82: 225-30.

Nissen, H. P and H. W. Kreysel. 1983. Polyunsaturated fatty acids in relation to sperm motility. Androl. 15: 264–269.

Olivares-Pineda, R., C. M. Gómez., R. R. Schwentesius and C. B. Carrera. 2009. Alternativas para la producción y mercadeo para la carne de conejo en Tlaxcala, México. Región y Sociedad XXI: 191-207.

Paula-Lopes F. F and P. J. Hansen. 2002. Heat shock-induced apoptosis in preimplantation bovine embryos is a developmentally regulated phenomenon. Biol Reprod. 66: 1169–1177.

Paul, C., A. A. Murray., N. Spears and P. T. Saunders. 2008. A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction 136: 73–84.

Pérez-Crespo, M., M. A. Ramírez., R. Fernández-González., D. Rizos., P. Lonergan, B. Pintad and D. Gutiérez-Adán. 2005. Differential sensitivity of male and female mouse embryos to oxidative induced heat-stress is mediated by glucose-6-phosphate dehydrogenase gene expression. Mol. Reprod. Develop. 72: 502–510.

Ponce de León, R., G. Guzmán, O. Pubillones, J. González and M. Mora. 2003. Comportamiento reproductivo y predestete de razas puras de conejas importadas. Rev. Cub. Cienc. Agríc. 37: 353-361.

Rodríguez de Lara, R. and L. M. Fallas. 1999. Environmental and physiological factors influencing kindling rates and litter size at birth in artificially inseminated doe rabbit. World Rabbit Science 7: 191-196.

Sabés-Alsina, M., O. Tallo-Parra, M. T. Mogas, J. M. Morrel and M. Lopez Bejar. 2016. Heat stress has an effect on motility and metabolic activity of rabbit spermatozoa. Animal Reproduction Science. 173: 18-23.

Safwat, M. A., L. Sarmiento-Franco and R. H. Santos-Ricalde. 2014. Rabbit production using local resources as feedstuffs in the tropical. Trop. Subtrop. Agroecosyt. 17:161-171.

Villagrá, A., V. Blanes and A. Torres. 2004. Introucción a la climatización de las granjas cunicolas. Boletín de cunicultura Enero-Febrero 131: 12-18.

Wallace, J. M., T. R, Regnault, S. W. Limesand, W. W. Hay and R. V. Jr. Anthony. 2005. Investigating the causes of low birth weight in contrasting ovine paradigms. J. Physiol. 565: 19–26.

Zeron, Y., A. Ocherotny., O. Kedar., A. Borochov., D. Sklan and A. Arav. 2001. Seasonal changes in bovine fertility: relation to development competence of oocyte, membrane properties and fatty acid composition of follicles. Reproduction 121: 447-454.

How to Cite
Trejo Cordova, Alfredo, Demetrio Alonso Ambriz García, Sergio Ramirez Ordoñez, and Víctor Manuel Meza Villalvazo. 2019. “Reproductive Records of Two Rabbit Farms in the Tuxtepec-Oaxaca Region, Mexico”. Latin American Archives of Animal Production 27 (1-4), 21-26.
Original paper