
Mamilov, A., Dilly, O., 2011. Shifts in respiratory
quotient and δ13C isotopic signature of CO2
produced by soils under longterm agricultural use
in Arid Steppe ecosystems. Geomicrobiol J 28, 625–
631. https://doi.org/10.1080/01490451.2011.581015
Santana, P.H.L., Frazão, L.A., Santos, L.D.T.,
Fernandes, L.A., Sampaio, R.A., 2016. Soil attributes
and production of Eucalyptus in monoculture and
silvopastoral systems in the north of Minas Gerais,
Brazil. J Agric Sci Technol B 6, 361–370.
https://doi.org/10.13140/RG.2.2.10617.77926
Grover, M., Maheswari, M., Desai, S., Gopinath, K.A.,
Venkateswarlu, B., 2015. Elevated CO2: Plant
associated microorganisms and carbon sequestration.
Applied Soil Ecology 95, 73–85. https://doi.org/
10.1016/j.apsoil.2015.05.006
Gruba, P., Mulder, J., 2015. Tree species affect cation
exchange capacity (CEC) and cation binding
properties of organic matter in acid forest soils.
Science of the Total Environment 511, 655–662.
https://doi.org/10.1016/j.scitotenv.2015.01.013
Harris, D., Porter, L.K., Paul, E.A., 1997. Continuous
flow isotope ratio mass spectrometry of carbon
dioxide trapped as strontium carbonate. Commun
Soil Sci Plant Anal 28, 747–757.
https://doi.org/10.1080/00103629709369827
Hawkesford, M., Horst, W., Kichey, T., Lambers, H.,
Schjoerring, J., Møller, I.S., White, P., 2023. Functions
of macronutrients, in: Rengel, Z., Cakmak, I., White,
P.J. (Eds.), Marschner’s Mineral Nutrition of Higher
Plants. Elsevier Inc., pp. 135–189.
https://doi.org/10.1016/B9780123849052.000066
Johan, P.D., Ahmed, O.H., Omar, L., Hasbullah, N.A.,
2021. Phosphorus transformation in soils following co
application of charcoal and wood ash. Agronomy 11,
2010. https://doi.org/10.3390/agronomy11102010
Karley, A.J., White, P.J., 2009. Moving cationic minerals
to edible tissues: potassium, magnesium, calcium.
Curr Opin Plant Biol 12, 291–298.
https://doi.org/10.1016/j.pbi.2009.04.013
Larsen, S., 2017. Soil Phosphorus and Potassium, in:
Weil, R.R., Brady, N.C. (Eds.), The Nature and Properties
of Soils. Pearson, Columbus, OH, USA, pp. 643–695.
Lima, H.N.B., Dubeux Jr, J.C.B., Santos, M.V.F., Mello,
A.C.L., Lira, M.A., Cunha, M. V., 2018. Soil attributes of a
silvopastoral system in Pernambuco Forest Zone.
Tropical GrasslandsForrajes Tropicales 6, 15–25.
https://doi.org/10.17138/TGFT(6)1525
Lira Junior, M.A., Fracetto, F.J.C., Ferreira, J.S., Silva,
M.B., Fracetto, G.G.M., 2020. Legume silvopastoral
systems enhance soil organic matter quality in a
subhumid tropical environment. Soil Science
Society of America Journal 84, 1209–1218.
https://doi.org/10.1002/saj2.20106
Mathesius, U., 2022. Are legumes different? Origins
and consequences of evolving nitrogen fixing
symbioses. J Plant Physiol 276, 153765.
https://doi.org/10.1016/j.jplph.2022.153765
Meijboom, F.W., Hassink, J., Van Noordwijk, M., 1995.
Density fractionation of soil macroorganic matter
using silica suspensions. Soil Biol Biochem 27, 1109–
1111. https://doi.org/10.1016/00380717(95)00028D
Montagnini, F., 2000. Accumulation in aboveground
biomass and soil storage of mineral nutrients in pure
and mixed plantations in a humid tropical lowland.
For Ecol Manage 134, 257–270.
https://doi.org/10.1016/S03781127(99)002625
Mott, G.O., Lucas, H.I., 1952. The desing, conduct, and
interpretation of grazing trials on cultivated and
improved pastures, in: Proceedings of the Sixth
International Grassland Congress. Pennsylvania State
College, Pennsylvania, pp. 1–6.
Moura, O.N., Passos, M.A.A., Ferreira, R.L.C., Molica,
S.G., Lira Junior, M.A., Lira, M.A., Santos, M.V.F.,
2006. Biomass and nutrients distribution of Mimosa
caesalpiniaefolia Benth. Revista Árvore 30, 877–884.
https://doi.org/10.1590/s010067622006000600002
Neina, D., 2019. The role of soil pH in plant nutrition
and soil remediation. Appl Environ Soil Sci 2019,
5794869. https://doi.org/10.1155/2019/5794869
Oliveira, J.T.C., Lira, M.A., Santos, M.V.F., Freire, F.J.,
Dubeux, J.C.B., Freitas, E.V., Costa, S.B.M., 2018.
Methodologies in the evaluation of forage mass in tree
legumes. Revista Brasileira de Ciencias Agrarias 13,
e5500. https://doi.org/10.5039/agraria.v13i1a5500
Ramnarine, R., WagnerRiddle, C., Dunfield, K.E.,
Voroney, R.P., 2012. Contributions of carbonates to soil
CO2 emissions. Can J Soil Sci 92, 599–607. https://
doi.org/10.4141/CJSS2011025
RasouliSadaghiani, M.H., Barin, M., Siavash
Moghaddam, S., Damalas, C.A., Ghodrat, K., 2018. Soil
quality of an Iranian forest ecosystem after conversion
to various types of land use. Environ Monit Assess
190, 447. https://doi.org/10.1007/s106610186815z
RIMA, 2014. Relatório de Impacto Ambiental. Arco
Viário da Região Metropolitana do Recife 36.
Rui, Y., Murphy, D. V., Wang, X., Hoyle, F.C., 2016.
Microbial respiration, but not biomass, responded
linearly to increasing light fraction organic matter
input: Consequences for carbon sequestration. Sci Rep
6, 1–9. https://doi.org/10.1038/srep35496
Santos, A.M.G., Dubeux Junior, J.C.B., Santos, M.V.F.,
Lira, M.A., Apolinário, V.X.O., Costa, S.B.M.,
Coêlho, D.L., Peixôto, T.V.F.R., Santos, E.R.S., 2020.
Animal performance in grass monoculture or
Herrera et al.
298
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (4): 287 299