
133
De Souza, T. C. R., A. Aguilera, S. Rubio, W. Machado,
K. Escobar, J. G. Gómez, G. MariscalLandín. 2019.
Growth performance, diarrhoea incidence, and nutrient
digestibility in weaned piglets fed an antibioticfree diet
with dehydrated porcine plasma or potato protein
concentrate. Annals of Animal Science, 19(1): 59–172.
https://www.proquest.com/openview/
ea0e93c6032f6c676e0221fee9ef3783/1?pq
origsite=gscholar&cbl=1976406
De Lucas Moreno, B., R. G. Soltero, C. Bressa, M.
Bailén, M. Larrosa. 2019. Modulación a través del
estilo de vida de la microbiota intestinal. Nutrición
Hospitalaria: Órgano Oficial de la Sociedad
Española de Nutrición Parenteral y Enteral, 36(3):
3539. DOI: http://dx.doi.org/10.20960/nh.02805
Elghandour, M. M. Y., Z. L. Tan, S. H. Abu Hafsa, M. J.
Adegbeye, R. Greiner, R., E. A. Ugbogu, J. Cedillo
Monroy, A. Z. M Salem. 2019. Saccharomyces cerevisiae
as a probiotic feed additive to non and pseudo
ruminant feeding: a review. Journal of Applied
Microbiology, 128(3): 658674.
https://doi.org/10.1111/jam.14416
Everaert, N., S. Van Cruchten, B. Weström, M. Bailey,
C. Van Ginneken, T. Thymann, R. Pieper. 2017. A
review on early gut maturation and colonization in
pigs, including biological and dietary factors affecting
gut homeostasis. Animal Feed Science and Technology,
233(1): 89103.
https://www.sciencedirect.com/science/article/abs/
pii/S037784011631063X?via%3Dihub
Frei, R., M. Akdis, L. O’Mahony. 2015. Prebiotics,
probiotics, synbiotic, and the immune system:
experimental data and clinical evidence. Current
Opinion in Gastroenterology, 31(2): 153158.
https://www.zora.uzh.ch/id/eprint/
107856/7/0000157420150300000012.pdf
Garcia, G. R., C. A. Dogi, V. L. Poloni, A. S. Fochesato,
A. De Moreno de Leblanc, A. M. Cossalter, D. Payros, I.
P. Oswald, L. R. Cavaglieri. 2018. Beneficial effects of
Saccharomyces cerevisiae RC016 in weaned piglets: In
vivo and ex vivo analysis. Beneficial microbes, 10(1): 33
42.
https://www.ingentaconnect.com/content/wagac/
bm/2019/00000010/00000001/art00005
Gómez Insuasti, A. S., D. V. Collazos, F. Argote. 2008.
Efecto de la dieta y edad del destete sobre la fisiología
digestiva del lechón. Biotecnología en el Sector
Agropecuario y Agroindustrial, 6(1): 3241.
https://dialnet.unirioja.es/servlet/articulo?
codigo=6117785
Gorissen S. H. M., J. J. R. Crombag, J. M. G. Senden, W.
A. Huub Waterval, J. Bierau, L. B. Verdijk, L. J. C. van
Loon. 2018. Protein content and amino acid
composition of commercially available plantbased
Gresse, R, F. ChaucheyrasDurand, M. A. Fleury, T.
de Wiele, E. Forano, S. BlanquetDiot. 2017. Gut
Microbiota Dysbiosis in Postweaning Piglets:
Understanding the Keys to Health. Trends in
Microbiology, 25(10): 851873.
https://www.sciencedirect.com/science/article/abs/
pii/S0966842X1730118X
Gresse, R., F. Chaucheyras Durand, L. Dunière, S.
BlanquetDiot, E. Forano. 2019. Microbiota
composition and functional profiling throughout the
gastrointestinal tract of commercial weaning piglets.
Microorganisms, 7(9): 343366.
https://www.mdpi.com/20762607/7/9/343
He, Y., Q. Yuan, J. Mathieu, L. Stadler, N. Senehi, R.
Sun, P. J. Alvarez. 2020. Antibiotic resistance genes
from livestock waste: Occurrence, dissemination, and
treatment. NPJ Clean Water, 3(1): 111.
https://www.nature.com/articles/s415450200051
0.pdf?origin=ppub
Hertrampf, J. W., F. PiedadPascual. 2003. Handbook
on ingredients for aquaculture feeds. Springer Science
and Business Media. 573 pp. ISBN 0412627604.
Holman, D. B., M. R. Chénier. 2014. Temporal changes
and the effect of subtherapeutic concentrations of
antibiotics in the gut microbiota of swine. FEMS
microbiology ecology, 90(3): 599608.
DOI: 10.1111/15746941.12419
Islas, I., Y. Minero, A. C. James. 2005. Proteínas contra
las infecciones de las plantas. Ciencia 3(1): 6474.
09_Peptidos 6474.QXP (amc.edu.mx)
Jin, Z., Y. X. Yang, J. Y. Choi, P. L. Shinde, S. Y. Yoon,
T.W. Hahn, H. T. Lim, Y.K. Park, K.S. Hahm, J.W. Joo,
B.J. Chae. 2008a. Effects of potato (Solanum tuberosum L.
cv. Golden valley) protein having antimicrobial activity
on the growth performance, and intestinal microflora
and morphology in weanling pigs. Animal Feed
Science and Technology, 140(1): 139–154.
https://www.sciencedirect.com/science/article/abs/
pii/S0377840107005421
Jin, Z., Y. X. Yang, J. Y. Choi, P. L. Shinde, S. Y. Yoon,
T.W. Hahn, H. T. Lim, Y. Park, K.S. Hahm, J. W. Joo, B. J.
Chae. 2008b. Potato (Solanum tuberosum L. cv. Gogu
valley) protein as a novel antimicrobial agent in weanling
pigs. Journal of Animal Science, 86(7): 15621572.
https://web.archive.org/web/20190224060551id_/
http://pdfs.semanticscholar.org/53cb/
1c8cd84f1384f7eac9e98138d55bd5cafc27.pdf
KaźmierczakSiedlecka, K., J. Ruszkowski, M. Fic, M.
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 115 137
Alimentos funcionales para la salud intestinal de los detestados lechones
protein isolates. Amino Acids, 50: 16851695.
https://link.springer.com/article/10.1007/s00726018
26405
Folwarski, W. Makarewicz. 2020. Saccharomyces
boulardii CNCM I745: a nonbacterial microorganism
used as probiotic agent in supporting treatment of