Archivos Latinoamericanos de Producción Animal. 2023. 31 (2)
Genetic and phenotypic variation of body measurements in
Venezuelan Creole goat population
Recibido: 20220321. Revisado: 20220516. Corregido: 20230612. Aceptado: 20230613
1Corresponding author: fpariaco@gmail.com
2 Passed away
207
Fidel Alejandro Pariacote1
Abstract. Data from a monitoring program of a sample of 80 adult female goats per heard for three years were used
to estimate the phenotypic and genetic parameters of body measurement traits in Venezuelan Creole goat
population. The study was carried out in five herds, three in Paraguana, two in Pedregal, and one in Carora. The
observed breed composition was 90, 2, and 8 % creole, exotic, and crossbred, respectively, and all genotypes were
managed with common shepherding areas. The body weight and biometric traits were determined in adult female
goats. Data were recorded from limbs: forearm, thigh, metacarpus, and metatarsus perimeter, anterior and
posterior hoof perimeter, and anterior and posterior hoof height; from the pelvic: the anterior and posterior rump
width, rump length, scapulaischial length, and body length; from the thorax: chest width, depth, and height,
wither height, heart girth, and the abdominal perimeter; and from the cephalic region: face length and width, eye
separation, and horn and ear length. SAS (2016) was used to evaluate for fixed effects, and single and twotrait
animal model analyses were run with the MTDFREML Package to estimate genetic parameters. The model included
the year of birth and the locations as fixed effects, the fraction of genetic groups as covariables, and the animal was
fit as a random factor. Estimates of heritability for limbs’ traits range from 0.11 to 0.38; pelvic traits from 0.00 to 0.13;
thoracic traits from 0.02 to 0.14; and cephalic traits from 0.24 to 0.79. Most traits resulted in moderately to highly
genetic correlation. Body measurements revealed moderate to high genetic correlations. In conclusion, differences
in body measurements were insufficient to discriminate the Venezuelan Creole population by region. Outbreeding
did not appear to be an adequate strategy to make favorable changes, at least morphologically, in the Creole goat
population studied. The additive or heritable fraction out of the total phenotypic variance found in this study
indicated that most traits evaluated can be improved through selection, which should be considered in any
breeding program.
Key words: extensive production systems, morphological traits, genetic parameters
https://doi.org/10.53588/alpa.310207
Area de Ciencias del Agro y del Mar, Universidad Nacional Experimental Francisco de Miranda, Coro, Falcón 4101, Venezuela.
Variación genética y fenotípica de medidas corporales en la población caprina
Criolla venezolana
Resumen. Datos de un programa de seguimiento de una muestra de 80 vientres adultos por rebaño, por tres años
fueron usados para estimar parámetros genéticos y fenotípicos en la población caprina Criolla venezolana. Cinco
rebaños manejados en forma extensiva fueron seleccionados, tres en Paraguaná, dos en Pedregal, y uno en Carora.
La composición racial fue de 90, 2, y 8 % Criollo, Exótico, y Cruza, y todos expuestos a un manejo extensivo con
áreas de pastoreo común. La data incluyó de las extremidades: perímetro en su punto medio del Brazo, Pierna,
Metacarpus, y Metatarsus, y perímetro y altura de la Pezuña anterior y posterior; de la pelvis: ancho anterior y
posterior, y largo de la Grupa, largo Escapulaisquion, y largo del Cuerpo; del tórax: ancho, altura y profundidad
del Pecho, alzada a la Cruz, y perímetro del rax y Abdomen; y de la cabeza: largo y ancho de la Cara, separación
de Ojos, y largo de Orejas y Cuernos. El SAS (2016) fue usado para evaluar por efectos fijos, y el MTDFREML para
estimar parámetros genéticos. En los análisis uni y bivariados, año de nacimiento, localización como la
concatenación regiónrebaño, y la fracción de grupo genético como covariables fueron incluidos en el vector de
efectos fijos, y animal como efecto aleatorio. Los estimados de índice de herencia para características de las
extremidades oscilaron entre 0.11 y 0.38; para características de la pelvis entre 0.00 y 0.13; para características del
tórax entre 0.02 y 0.14; y para características de la cabeza entre 0.24 y 0.79. Los coeficientes de correlación genética
Dalila C. D’Ascencao Leyberth Elena Ruiz Quintero Nuñez Miranda
William Morón †2 Xiomara Pimentel3Emerita Abreu Darwin R. Lugo Sira Vincenzo Landi
208
Introduction
Pariacote et al
Genetic selection has improved animal production
and reduced the land area used per animal (Von
Keyserlingk et al., 2013). Genetic selection criteria and
intensity vary according to genetic groups and world
regions (Pariacote, 2007b; GarciaPeniche et al., 2012).
Farm animals were brought to America from Europa
(Beteta, 1997; Rodero et al., 1992). In Venezuela, those
animals were raised in extensive production systems
managed without genetic selection. Under such
conditions, natural selection may have favored fitness
over other production traits; which may explain the
current low production levels of those animals
commonly called Creole or Spanish goats. The
conservation and the improvement of the Creole
genetic resources have been justified from different
points of view (Hodges, 2000; Scherf 2000; Pariacote et
al., 2004). However, social and economic development
plans based on endogenous technologies and local
genetic resources are rarely considered. Outbreeding is
common in most official development plans as a
unique genetic improvement strategy in most cases. In
rural communities in Venezuela, goats are the most
abundant species, and in some regions, it is the main
economical source for several families. However, the
dairy and meat goat production systems commonly do
not fulfil the family's economic needs (Pariacote,
2007a), and genetic selection is not common. The
development of genetic plans has not been successfully
applied because they are commonly based on imported
technologies and germplasm (Pariacote, 2000). The use
of exotic germplasm reduces the use of native genetic
resources (Pariacote et al., 2007). Genetic selection of
the Creole goat population has not been considered,
despite its social importance, and biological and
economic contribution to alimentary security.
Therefore, a better understanding of the phenotypic
and genetic variation of biometric traits in creole goats
in extensive production systems is necessary. The aim
of the present study was to estimate the phenotypic
and genetic parameters of body measurement traits in
a population of Creole goats in Venezuela.
Variação genética e fenotípica de medidas corporais em uma população caprina
crioula venezolana
Resumo. Os dados fornecem um programa de seguimento de una muestra de 80 vientres adultos por rebaño, por
tres años. Cinco rebaños manejados em formato extenso fueron selecionado, tres em Paraguaná, dos em Pedregal, e
um em Carora. As regiões estão localizadas em zonas áridas a 50, 250, e 600 m.s.n.m., respectivamente, e a
precipitação e temperatura, oscilando entre 400 a 700mm e de 24 a 35 °C. A composição racial fue de 90, 2, y 8 %
Criollo, Exótico, y Cruza, y todos expuestos a un manejo extensivo com áreas de pastoreio común. Lado dos dados
anteriores inclusive: perímetros em seu ponto medio del Brazo, Pierna, Metacarpus, y perímetros y de altura da
Pezuña; da pelve: ancho anterior e posterior, e largo do grupo, largo Escapulaisquion, e largo del Cuerpo; del
tórax: ancho, altura y profundidade del Pecho, alzada a la Cruz, y perímetros del Tórax y Abdomen; y de la cabeza:
largo y ancho de la Cara, separación de Ojos, y largo de Orejas y Cuernos. El SAS (2016) fue usado para avaliar por
efectos fijos, y el MTDFREML para estimar parâmetros genéticos. Na análise uni e bivariados, ano de nacimiento,
localização como a concatenação regiãorebaño, e a fração de grupo genético como covariáveis fueron incluidos no
vetor de efeitos fijos, y animal como efeito aleatório. Os valores estimados de índice de herança para as
características das oscilações entre 0,11 e 0,38; para características da pelve entre 0,00 y 0,13; características do tórax
entre 0,02 e 0,14; y para características de la cabeza entre 0,24 e 0,79. Os coeficientes de correlação genética resultam
em sua maioria de moderado a alto. El estudio muestra variação similar fenotípica a outras poblaciones de caprino
Criollo en Sudamérica. A variação morfológica observada entre regiões não parece ser suficiente para discriminar
por região. La excoria no mostró ser uma boa estrategia para lograr cambios favoráveis bajo estas condições de
manejo extensivo. A variação genética aditiva observada foi suficiente para iniciar planos de seleção. Prefeito
información es necesaria anterior a una conclusión más definitiva.
Palavraschave: Manejo extensivo, Características morfológicas, Parâmetros genéticos
resultaron en su mayoría de moderado a alto. El estudio muestra similar variación fenotípica a otras poblaciones de
caprino Criollo en Sudamérica. La variación morfológica observada entre regiones no parece ser suficiente para
discriminar por región. La excoria no mostró ser una buena estrategia para lograr cambios favorables bajo estas
condiciones de manejo extensivo. La variación genética aditiva observada luce suficiente para iniciar planes de
selección. Mayor información es necesaria previo a una conclusión más definitiva.
Palabras clave: Manejo extensivo, Características morfológicas, Parámetros genéticos
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
209
Genetic and phenotypic variation in the Venezuelan Creole goat population
Materials and Methods
Population
Five herds under an extensive production system
were selected from traditional goat raising regions in
Venezuela, three in Paraguana, two in Pedregal, and
one in Carora. The first two are localized in Falcon
State and the third in Lara State, at around 50, 250, and
600 m.a.s.l., respectively. All regions are in an arid
environment. The characteristic tropical thorny
mountain covers the land, although the density of
thorny plants varies among regions. The rainfall and
temperature range from 400 to 700 mm and 24 to 35 °C,
respectively. These regions are considered less
generically connected than average due to scarce
germplasm interchange among them. Data come from
a monitoring program of a sample of 80 adult female
goats per heard for three years. Animals were
managed in common shepherding areas. In milk
female were penned at night time, and kids remained
in these pens all day to protect them from depredators.
The farmers did not apply breeding or genetic
management plans in the herd. Outbreeding has been
applied commonly to improve the herd genetically.
The replacements needed, usually breedingbucks, are
got from outside which are crossbred mostly. The
systems are meat oriented but milking practice has
been increasing. More detail on the project is given in
Pariacote et al. (1999).
Phenotypic parameters
A trained person collected the data from limbs,
pelvis, thorax and head. Limbs’ measurements:
forearm and thigh perimeters, measured at middle
point, metacarpus and metatarsus perimeters,
measured at middle point, and anterior and posterior
hoof perimeters and heights, all of them were obtained
by a measuring tape. The pelvic region measurements:
the anterior and posterior rump widths, as the distance
between both coaxal and both ischial tuberosities
respectively, rump length, as the distance between the
external declination of the ilium to the ischial
tuberosity, were obtained by an outside caliper, and
the scapulaischial Length, as the straight distance
between the scapulahumeral joint and the ischium,
and the body length, as the perimeter distance between
the first coccygeal vertebra and the atlantooccipital
joint point, were obtained by a measuring tape. The
thoracic region measurements: the chest width, as the
scope between both scapulahumeral joints, and the
chest depth, as the scope between the outstanding part
of the sternum and the dorsal apophysis of the fifth
thoracic vertebra, were obtained by an outside caliper,
the chest height as the straight distance from the
outstanding part of the median line of the sternum to
the ground, wither height as the height from the dorsal
apophysis of the fifth thoracic vertebra to the ground,
by a zoometric stick, and the heart girth as the
perimeter circumference of the thorax through the
sternum hollow and the dorsal apophysis of the fifth
thoracic vertebra, and the abdominal perimeter or
barrel, by a measuring tape. The cephalic region
measurements: the face length and face width, as the
distance between the zygomatic arc and nasal plain
and between both eye sockets respectively, eye
separation, as the distance between both internal
commissure of the eyes, and right horn and ear lengths
were obtained by a measuring tape. Animals were
identified at birth and monitored every 28 ± 3 days.
Although; observations on growth animals were
available, the data only include adult females. Males
leave the herd earlier than the six months of age.
Genetic evaluation
All animals were supposed to be pure Creole if no
evidence of outbreeding was found. To evaluate for
outbreeding effect, the expected fraction of loci from
mating with a particular combination of alleles from
different breeds (gij) or Mendelian genotypes were
attained in each animal which depends on the maternal
and paternal genotypes (Pariacote, 2012.) The i and the
j stand for the paternal and maternal breed structure
respectively. If i=1, . . . ,n and j=1,. . .,m; for n m,
there will be n(n+1)/2 + (mn)n different combinations
possible. Thus; in a multi breed population, a genotype
resulting from random mating is expected to be any
combination of alleles from the existing breeds. Due to
the low level of crossbreeding observed, only three
genotypes or genetic groups were considered. The
Creole genotype was attained as the fraction of loci
from mating expected to be homozygous Creole, the
Exotic as the fraction of loci expected to be
homozygous Exotic, whether pure or not, and the
Crossbred genotype as the fraction of loci from mating
expected to be heterozygous Creole Exotic. The three
fractions must sum to unity, and the expectation will
depend on the breed composition of the maternal and
paternal group. The exotic breeds recently introduced
were Alpine, Nubian, Canaria, Sannen, and La
Mancha. Records were classified by year of birth and
location as the concatenation regionherd.
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
Quantitative diversity
The unadjusted mean and variation coefficient of
variables used are given in Table 1. This description
analysis only included adult females, and data was not
trimmed, only evident outliers were taken out. For
Limb’s measurements, the variation coefficient ranges
from 9.08 for the metacarpus perimeter to 25.12 for
anterior hoof height; for pelvic measurements, from
7.24 for rump length to 13.82 for posterior rump width;
for cephalic measurements, from 8.97 for head width to
22.01 for horn length; and for thoracic measurements,
from 6.09 for wither height to 13.14 for chest width.
The unadjusted mean and phenotypic variation
attained for most measurement traits are within the
range reported in the cited literature for samples from
argentinian (VivianaDeza 2007; Fernandez et al., 2014;
Lanari et al., 2019), mexican (Martínez et al., 2014;
ValenciaFranco et al., 2019), and peruvian Creole goat
population (GómezUrviola, 2013). However, the
animals studied had lower body weight than those
reported by Lanari (2003), Fernandez et al. (2014), and
GomezUrviola (2013). Results are also in agreement
with those reported by ChinchillaVargas et al. (2018)
from a sample of 40 indigenous breeds from four
African countries. Results show that according to the
measurements evaluated, the Venezuelan Creole goat
population is similar to other populations of Creole
goats in South America and shows similar phenotypic
variation.
Outbreeding effect
The genetic structure or breed composition of the
sample used resulted very unbalanced, due to the low
level of crossbreeding observed. Most animals were
Creole, as expected. Pure exotic animals were not
found. Genes from exotic breeds were all in crossbred
animals. To evaluate for outbreeding effect, the fraction
of breeds or genetic groups attained as described were
used as covariables. Each fraction was assumed to be a
random sample of the average genetic capacity or
genotype of the group, and will be referred to as
Creole, Exotic, and Crossbred genetic groups. So, the
regression of any response variable on those fractions
will be an estimate of the corresponding genotype of
the group. The regression coefficient is expected to be
the phenotype value of the group when the fraction of
the group is equal to unity. Thus, the regression on the
Crossbred group estimates the expected phenotype
value of a hypothetical F1. Furthermore, those
coefficients are deviations from the base and embody
the genetic value of the group in that particular
environment, which allowed to estimate both the
general and specific combining abilities (Pariacote,
2012). The data studied included 1597 animals and, on
the average, the genetic composition, out of the total
loci, was expected to be 90, 2, and 8 % Homozygous
Creole, Homozygous Exotic, and Heterozygous
CreoleExotic, respectively. Under the nonexistence of
environmental deviation, the genotype of a group was
expected to be equal to the phenotype. So, any
observed difference among pure groups may be of
genetic or environmental origin, and the difference of
the crossbred from the pure groups’ average, in
addition, to the nicking ability of the two genetic
groups involved. The environmental deviations among
genetic groups in the same environment are due to
genotype x environment interactions, when the
distance among genotypes changes among
environments. The nicking ability is due to the non
additive effect of genes. If a trait is only governed by
Results and Discussion
210
Analyses
Firstly, the GLM Procedure of SAS (2016) was used
to evaluate for nongenetic effects to be reasonable in
the final model for all traits, and single and twotrait
animal model analyses were run with the MTDFREML
Package (Boldman et al., 1995) to estimate genetic
parameters. A total of 1665 animals were in the
pedigree file, and 27 breedingbucks. A common
identification code was assigned to all unknown
breedingbucks among herds and regions. For the two
trait analyses the general model was
, where:
y1, y2 = vector of observation of the two response
variables in consideration
b1, b2 = vector of unobservable fixed effects associated
to X1 and X2
u1, u2 = vector of random effects associated to Z1 and Z2
e1, e2 = vector of random residual effects
X1, X2 = design matrix that relates fixed effects to
observation of response variables
Z1, Z2 = design matrix that relates animal random
effects to observations of response variables
E[y] = Xb ; E[ue’]=0.
The final vector of fixed effects, after checking for
significance and determination coefficient of the model,
included year of birth, location as region herd
concatenation, and fraction of genetic groups as co
variables. The statistical model included, in addition,
animal as a random factor. The model was common for
all variables. The convergence criterion was set to 1x10
9. There was always a restart, even if the convergence
criterion was attained, to check for changes in estimates
Pariacote et al
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
211
Table 1. Variable description, cm; otherwise indicated
Traits N Mean VC SD Min Max
a) Limbs measurements
Forearm Perimeter 305 21.67 2.61 12.04 15.00 30.00
Thigh Perimeter 305 32.12 3.51 10.91 24.00 48.00
Metacarpus Perimeter 305 8.21 0.75 9.08 6.50 12.00
Metatarsus Perimeter 305 8.54 0.82 9.55 7.00 12.00
Anterior Hoof Perimeter 305 14.07 1.88 13.39 8.00 20.00
Posterior Hoof Perimeter 305 13.05 1.77 13.60 9.00 19.00
Anterior Hoof Height 305 3.54 0.82 23.31 2.00 7.00
Posterior Hoof Height 305 3.40 0.85 25.12 2.00 7.00
b) Pelvic measurements
Posterior Rump Width 308 9.89 1.37 13.82 7.00 17.00
Anterior Rump Width 308 13.96 1.75 12.57 10.00 19.50
Rump Length 308 19.85 1.44 7.24 14.00 25.00
Scapulaischial Length 308 68.23 5.63 8.25 51.00 92.00
Body Length 308 94.44 7.36 7.80 63.00 110.00
c) Cephalic measurements
Face Length 361 22.34 2.21 9.87 17.00 34.00
Face Width 361 13.08 1.17 8.97 11.00 19.00
Eyes Separation 361 9.29 1.25 13.45 7.00 18.00
Horn Length 334 14.24 3.13 22.01 7.00 23.00
Ear Length 361 13.56 2.31 17.06 4.00 24.00
d) Thoracic measurements
Chest Width 362 15.41 2.33 15.14 10.00 29.00
Chest Depth 362 30.84 3.23 10.46 13.00 42.00
Chest Height 362 36.33 3.34 9.20 26.50 46.00
Wither Height 362 66.11 4.03 6.09 55.00 79.00
Heart Girth 362 75.81 6.90 9.10 54.00 106.00
e) Abdominal Perimeter 360 82.00 9.95 12.14 59.00 117.00
f) Body weight, kg 363 29.34 6.06 20.64 20.00 50.60
additive genetic effect of genes, the cross expected
should be equal to the average of the genetic value of
the groups involved that is the general combining
ability. Any difference of the cross from the general
combining ability is the nicking ability that is the
specific combining ability, commonly referred to
heterosis or hybrid vigor when positive.
Results are given in Table 2. All Creole and Crossbred
fractions regression coefficients differ statistically from
zero (P < 0.05). Some estimates on the Exotic fraction
showed a large standard error and did not differ
statistically from zero, as expected due to data quality.
Comparisons among genetic groups were done only
for statistically significant estimates.
For the limbs set of measurements (Section a of Ta
ble 2), the thigh perimeter, and both the metacarpus
and metatarsus perimeters differed statistically
between the Creole and the Exotic groups (P < 0.05).
Though the low level of the Exotic group, the
Crossbred exceeded the best of the pure groups and
showed some statistically significant heterosis or
specific combining ability of 20 and 31 % for the last
traits, respectively. Anterior hoof perimeter and
anterior hoof height also differ statistically between the
Crossbred and the Creole, but statistically significant
heterosis was only observed for the last one. For pelvic
traits (Section b of Table 2), rump length and scapula
ischial Length differ statistically among all genetic
groups. The Creole resulted in the best of the pure
groups, and the Crossbred shows heterosis of around
15 % for both traits. None statistically significant
difference was observed among genetic groups for the
rest of the pelvic traits. For traits of the cephalic region
(Section c of Table 2), only face length and face width
differed statistically between Creole and the Crossbred
group, but statistically significant heterosis was
observed only for face width. Non other traits differ
statistically among the genetic groups. For the thoracic
region (Section d of Table 2), only the heart girth
differs statistically between the Creole and the
Crossbred group, but the heterosis did not differ
statistically from zero. None other statistically
significant difference was observed among genetic
groups for this set of traits.
The genetic estimated value, resulted very similar
among the genetic groups for most traits evaluated. As
a general tendency, the maximum and minimum
values are observed in the Crossbred and Exotic
groups, respectively. For body measurements, the ratio
Exotic/Creole ranges from 0.77 for thigh perimeter to
1.08 for posterior rump width, and the ratio Crossbred/
Creole from 1.00 for thigh perimeter to 1.08 for
scapulaischial length and rump length.
Genetic and phenotypic variation in the Venezuelan Creole goat population
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
212
Although data was unbalanced regarding genetic
groups involved, statistically significant differences
between the Creole and the Exotic groups for the traits
evaluated were detected, which is in agreement with
results reported by VivianaDeza (2007) and Lanari et
al. (2019.) However, the Crossbred and the Creole
groups were similar, in particular for body
measurements, which is contrary to crossbreeding
results (García et al., 1996; Pariacote, 1992; Lanari, 2003;
Pariacote, 2007). Although differences between the
Creole and Exotic breeds do exist, the distances of the
pure Exotic and the resulted Crossbred groups from
the Creole seem to diminish under range managed
conditions. Outbreeding under such conditions does
not seem to be a good strategy to make favorable
changes, at least morphologically, in the studied Creole
goat population.
Region effect
Diversity within a given specie or breed among
regions could be due to genetic drift, breeding, and
husbandry. Nonetheless, under extensive production
systems, differences among subpopulations of a breed
associated with regions should be due to the
ontogenetic effect of the environment. Under
conditions of a lowinput production environment, the
survival of animals is a matter of natural selection. In
such a case, the selection pressure and direction
depend on how the animal fits into the environment
and what is needed to adapt. So, if the subpopulations
were genetically connected, it would be possible to
evaluate the best suitable environment for the breed or
group studied.
The regions involved are well known as the most
traditional goat raising areas in Venezuela. As
mentioned, outbreeding with exotic breeds is a
generalized belief of genetic improvement with public
institutions linked to the sector being the main sources
that provide the exotic germ plasm. The level of
crossbreeding is then a matter of the producers’ ability
to get exotic reproducers. However, the herds selected
were very similar among the regions involved. The
Fraction of Creole, Exotic, and Crossbred groups were
of 0.87, 0.02, and 0.11 in Paraguana; of 0.98, 0.00, and
0.02 in Pedregal; and of 0.91, 0.03, and 0.06 in the
Carora Region. All herds were classified as lowinput
Creole Exotic Crossbred
Trait B SE b SE b SE SCA SE
a) Limbs
Forearm Perimeter 20.61 0.50 16.72 2.35 21.62 0.98 2.96 1.78
Thigh Perimeter 30.93a0.46 23.84b3.11 31.01 1.30 3.62 2.57
Metacarpus Perimeter 8.21a0.11 6.03b0.67 8.57 0.28 1.45* 0.56
Metatarsus Perimeter 8.69a0.25 5.62b0.72 9.39b0.39 2.24* 0.61
Anterior Hoof Perimeter 15.69a0.75 17.05 1.85 13.46b1.08 2.91 1.58
Posterior Hoof Perimeter 14.87 0.68 13.47 1.62 14.76 0.97 0.58 1.37
Anterior Hoof Height 4.22a0.39 1.03b0.79 4.89 0.50 2.27* 0.64
Posterior Hoof Height 4.14a0.30 0.45b0.79 5.44b0.45 3.15* 0.67
b) Pelvic region
Posterior Rump Width 9.29 0.27 10.04 1.23 9.9 0.54 0.23 0.99
Anterior Rump Width Nonest . Nonest . Nonest . 2.27 1.17
Rump Length 19.25a0.27 16.57b1.24 20.73c0.52 2.82* 0.95
Scapulaischial Length 65.76a0.66 57.20b4.84 70.84c1.94 9.36* 3.82
Body Length 90.66 3.12 82.21 7.45 89.12 4.11 2.68 5.79
c) Cephalic region
Face Length 21.75a0.43 20.63 1.81 23.71b0.77 2.52 1.36
Face Width 12.81a0.25 11.19 0.94 13.69b0.42 1.69* 0.70
Eyes Separation 9.03 0.27 10.12 1.07 9.23 0.47 0.35 0.83
Horn Length 13.45 0.53 12.24 2.69 15.39 1.11 2.55 2.06
Ear Length 13.19 0.51 13.07 2.01 15.91 0.89 2.78 1.57
d) Thoracic region
Chest Width 16.04 0.56 13.16 2.07 15.18 0.89 0.58 1.68
Chest Depth 30.14 0.80 29.73 2.74 30.74 1.21 0.81 2.22
Chest Height 36.4 0.40 34.37 2.93 37.15 1.15 1.76 2.37
Wither Height 65.35 0.93 64.13 3.71 66.96 1.57 2.22 3.04
Heart Girth 76.09a2.14 78.89 5.86 81.54b3.00 4.05 4.84
e) Abdominal Perimeter 89.24 3.23 91.04 7.56 89.23 4.20 0.91 6.17
f) Body weight 32.33 2.21 32.33 5.27 33.48 2.90 1.15 4.32
Estimates with different subscript along rows differ statistically (P < 0.05)
Table 2. Regression coefficient (b) on the genetic group and specific combining ability (SCA) with standard error (SE)
Pariacote et al
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
213
production systems, and husbandry was also similar.
Though cultural differences among herds do always
exist, the most remarkable ontogenetic source of
variation was expected to be associated to the
biophysical environment. Although all regions are
located in dry areas, land, vegetation, and similar
weather conditions, the biophysical environment does
somehow differ among them. Least square means
associated with regions are given in Table 3.
Table 3. Least square mean (LSM) and standard error (SE) by region
Paraguana Pedregal Carora
LSM SE LSM SE LSM SE
a) Limbs measurements
Forearm Perimeter 21.67 0.51 19.11 1.13 21.17 0.79
Thigh Perimeter 31.68a0.62 28.20b0.80 32.48ac 0.80
Metacarpus Perimeter 8.17 0.15 8.03 0.18 8.41 0.19
Metatarsus Perimeter 8.71 0.18 8.40 0.33 9.01 0.36
Anterior Hoof Perimeter 15.67 0.66 15.09 1.06 15.60 1.23
Posterior Hoof Perimeter 14.96 0.62 14.45 0.98 15.07 1.14
Anterior Hoof Height 4.34 0.41 3.69 0.60 4.66 0.72
Posterior Hoof Height 3.67a0.22 4.27 0.41 4.70b0.45
b) Pelvic measurements
Posterior Rump Width 10.24a0.31 8.57b0.57 9.32 0.45
Anterior Rump Width 14.66a0.29 11.86b0.34 13.04c0.36
Rump Length 19.99a0.27 18.42b0.60 19.68 0.42
Scapulaischial Length 68.23a0.66 62.87b1.42 67.38ac 0.97
Body Length 91.16 4.03 87.68 5.56 92.15 6.33
c) Cephalic measurements
Face Length 22.54 0.53 21.32 0.82 21.95 0.83
Face Width 13.22 0.31 12.37 0.48 13.02 0.48
Eyes Separation 9.71 0.35 8.71 0.50 8.81 0.53
Horn Length 14.31 0.64 11.71 0.99 14.89 1.00
Ear Length 14.48 0.66 12.39 0.93 13.52 0.98
d) Thoracic measurements
Chest Width 16.77a0.56 14.76b0.55 16.18c0.59
Chest Depth 31.63a0.79 29.14b0.78 29.82bc 0.83
Chest Height 36.07a0.42 35.62a0.46 37.64b0.51
Wither Height 66.33a0.92 64.32b0.91 65.82ac 0.99
Heart Girth 72.44a1.24 73.78a1.20 79.64b1.65
e) Abdominal perimeter 85.16a2.49 83.03a2.39 79.98b2.78
f) Body weight 29.63 1.67 28.22a1.60 30.70b1.88
LSM with different subscript along rows differ statistically (P < 0.05)
For limbs traits (Section a of Table 3), results are very
similar among regions. Only the least square mean of
thigh perimeter in Pedregal region differs statistically
from the other two regions. All pelvic traits, except
body length (Section b of Table 3) differ statistically
between Pedregal and Paraguana regions. Paraguana
differs from Carora for anterior rump width only, and
Pedregal differs from Carora for anterior rump width
and scapulaischial length. The least square means of
traits from the cephalic region (Section c of Table 3) did
not differ statistically among regions. For thoracic traits
(Section d of Table 3), Paraguana differs from Pedregal
for chest width, chest depth, and wither height.
Paraguana differs from Carora for all traits, except
wither height, and Pedregal differs from Carora for all
traits, except chest depth. The observed differences
among regions were not consistent. The greatest
difference for limb traits was observed for anterior
hoof height between Paraguana and Carora regions.
For pelvic traits, the greatest difference was observed
for anterior rump width between Pedregal and
Paraguana, and the set of thoracic traits for chest depth
between Pedregal and Paraguana regions. The
differences seem not to be associated with a common
environment linked to regions.
Multivariate analyses of body measurements have
been used to discriminate among subpopulations of
Creole. VivianaDeza (2007) compared subpopulations
of Argentinean Creole and concluded that all of them
were similar regarding body measurements. Lanari et
al. (2019) included both body measurements and
qualitative traits and found some phenotypic
differentiation among subpopulations of Creole in
Argentina. GomezUrviola (2013) also reports some
phenotypic differentiation among subpopulations of
Creole goats in Peru. The phenotypic differentiation
among subpopulations of Creole goats seems to be
more associated with qualitative traits than
quantitative ones (Ruiz et al., 2002; Pariacote, 2004;
Genetic and phenotypic variation in the Venezuelan Creole goat population
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
214
Table 4. Error (e), genetic (g), phenotypic (p) variance, and heritability estimates and standard error (SE) from single trait
analyzes
The estimates of genetic and environmental correlation
coefficients are given in Tables 5 and 6. Within the set of
limbs traits (Section a of Table 5), the pairs forearm and
thigh perimeters, metacarpus and metatarsus perimeters,
and anterior and posterior hoof perimeters resulted in
statistically significant results and high and positive
genetically correlated, which indicates that it was the same
traits. Nonetheless, the estimate for the pair anterior and
posterior hoof heights did not differ statistically from zero.
The forearm perimeter with the metacarpus perimeter and
with the anterior hoof perimeter, and the thigh perimeter
with both the metacarpus and metatarsus perimeters, and
with the posterior hoof height were high and positive
genetically correlated. The metacarpus perimeter resulted
positively genetically correlated with the posterior hoof
height; the metatarsus perimeter with both the anterior
and posterior hoof perimeters; and the anterior hoof
perimeter resulted high and positive genetically correlated
with both the anterior and posterior hoof heights. The
anterior hoof height was genetically independent of most
traits.
VivianaDeza, 2007; Mdladla et al., 2017), which may be
due to genetic drift instead of common environment
linked to regions.
In this study, the lowest body weight and body
measurements were observed for Pedregal Region, but
differences in morphological traits were not sufficient
to discriminate the Creole population by region.
Genetic and environmental parameters
Estimates of heritability from single trait analyses
and the residual, phenotypic, and genetic variances are
given in Table 4. For the set of limbs traits, the
estimates of heritability range from 0.11 for posterior
hoof perimeter to 0.38 for forearm perimeter, for pelvic
traits from 0.00 for posterior and anterior rump widths
to 0.30 for body length, for traits from the cephalic
region from 0.24 for face width to 0.79 for ear length,
and for traits from the thoracic region from 0.02 for the
abdominal perimeter to 0.21 for chest width and heart
girth. These single estimates of heritability are in
agreement with the average resulting from the
estimates of all two trait combination analyses (Tables
5 and 6).
s2e s2g s2p h2SE
a) Limbs traits
Forearm Perimeter 3.40 2.07 5.47 0.38 0.15
Thigh Perimeter 7.08 3.10 10.17 0.30 0.15
Metacarpus Perimeter 0.35 0.14 0.50 0.29 0.14
Metatarsus Perimeter 0.39 0.14 0.54 0.27 0.14
Anterior Hoof Perimeter 2.23 0.59 2.82 0.21 0.13
Posterior Hoof Perimeter 1.99 0.25 2.24 0.11 0.12
Anterior Hoof Height 0.32 0.11 0.43 0.25 0.13
Posterior Hoof Height 0.32 0.11 0.43 0.25 0.13
b) Pelvic traits
Posterior Rump Width 2.35 0.00 2.35 0.00 0.13
Anterior Rump Width 2.92 0.00 2.92 0.00 0.12
Rump Length 1.76 0.43 2.19 0.20 0.13
Scapulaischial Length 25.50 2.39 27.92 0.09 0.15
Body Length 36.60 15.86 52.48 0.30 0.14
c) Cephalic traits
Face Length 2.55 0.83 3.38 0.25 0.14
Face Width 1.03 0.32 1.35 0.24 0.12
Eyes Separation 0.80 0.26 1.06 0.25 0.13
Horn Length 5.92 2.34 8.26 0.28 0.15
Ear Length 0.91 3.34 4.25 0.79 0.11
d) Thoracic traits
Chest Width 2.25 0.60 2.85 0.21 0.13
Chest Depth 14.40 0.73 15.13 0.05 0.11
Chest Height 8.70 2.23 10.93 0.20 0.14
Wither Height 19.60 1.53 21.17 0.07 0.13
Heart Girth 31.60 8.48 40.09 0.21 0.13
e) Abdominal perimeter 61.60 1.29 62.87 0.02 0.11
Pariacote et al
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
215
Table 5. Heritability and genetic and environmental correlation coefficients, on, above, and below diagonal respectively and underneath in italic the standard error.
Heritability is the arithmetic mean of all two trait combination analyzes.
Limbs traits Pelvic traits
Traits FAP THP MCA MTA AHP PHP AHH PHH PRW ARW RUL SIL BOL
Forearm Perimeter, FAP 0.39 0.64 0.78 0.53 0.60 0.48 0.27 0.49 0.00 0.00 0.92 0.51 0.23
0.15 0.21 0.25 0.28 0.26 0.37 0.43 0.25 ** ** 0.20 0.46 0.26
Thigh Perimeter, THP 0.48 0.29 0.71 0.79 0.29 0.08 0.01 0.79 0.00 0.00 0.94 1.00 0.67
0.12 0.14 0.25 0.23 0.35 0.55 0.39 0.23 ** ** 0.26 0.56 0.22
Metacarpus Perimeter, MCA 0.27 0.33 0.29 0.79 0.60 0.33 0.23 0.54 0.94 1.00 0.50 0.95 0.67
0.13 0.12 0.14 0.17 0.31 0.46 0.34 0.23 ** ** 0.31 0.96 0.23
Metatarsus Perimeter, MTA 0.37 0.32 0.53 0.26 0.93 0.80 0.04 0.87 1.00 1.00 1.00 1.00 1.00
0.13 0.12 0.09 0.14 0.30 0.35 0.40 0.22 ** ** 0.32 0.62 0.19
Anterior Hoof Perimeter, AHP 0.35 0.37 0.70 0.15 0.22 1.00 1.00 1.00 1.00 1.00 0.23 0.28 0.15
0.12 0.12 0.14 0.12 0.13 0.47 0.35 0.37 ** ** 0.45 0.63 0.36
Posterior Hoof Perimeter, PHP 0.46 0.44 0.32 0.30 0.79 0.13 0.26 0.13 1.00 1.00 0.16 0.07 0.32
0.11 0.10 0.11 0.11 0.13 0.12 0.50 0.64 ** ** 0.64 ** 0.42
Anterior Hoof Height, AHH 0.35 0.30 0.42 0.74 0.81 0.88 0.25 0.29 1.00 1.00 1.00 0.49 0.11
0.13 0.12 0.11 0.15 0.13 0.12 0.13 0.29 ** ** 0.88 0.82 0.38
Posterior Hoof Height, PHH 0.01 0.00 0.16 0.15 0.79 0.27 0.75 0.37 1.00 1.00 0.75 1.00 1.00
0.17 0.16 0.15 0.15 0.13 0.11 0.13 0.14 ** ** 0.30 0.65 0.20
Posterior Rump Width, PRW 0.73 0.81 0.83 0.82 0.73 0.88 0.75 0.30 0.02 0.88 1.00 1.00 1.00
0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.11 0.13 ** ** ** 0.55
Anterior Rump Width, ARW 0.69 0.79 0.72 0.85 0.75 0.88 0.77 0.44 0.70 0.06 1.00 1.00 1.00
0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.10 0.05 0.13 ** ** **
Rump Length, RUL 0.26 0.68 0.40 0.74 0.81 0.42 0.77 0.09 1.00 1.00 0.19 1.00 0.98
0.13 0.14 0.11 0.14 0.13 0.09 0.08 0.14 0.13 0.12 0.14 ** 0.18
Scapulaischial Length, SIL 0.57 0.68 0.38 0.71 0.37 0.44 0.00 0.60 0.95 1.00 0.55 0.10 0.76
0.15 0.14 0.11 0.14 0.10 0.09 0.00 0.14 0.13 0.12 0.07 0.14 0.43
Body Length, BOL 0.69 0.43 0.36 0.23 0.58 0.54 0.36 0.54 0.91 0.69 0.43 0.57 0.30
0.11 0.11 0.12 0.13 0.10 0.09 0.12 0.14 0.14 0.07 0.10 0.09 0.15
**Values for these cells exceed unity
a)Limbs traits
b) Pelvic traits
Genetic and phenotypic variation in the Venezuelan Creole goat population
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
216
The pairs of forearm and thigh perimeters, anterior
and metatarsus perimeters, anterior and posterior
hoof perimeters, and the anterior and posterior hoof
heights were high and positive environmentally
correlated. Other limbs’ traits were positive and
moderate environmentally correlated, except the
posterior hoof height that resulted environmentally
independent of the forearm perimeter, the thigh
perimeter, and the anterior and metatarsus perimeters.
Pelvic traits (Section b of Table 5) resulted in low
heritability, and the estimates of genetic correlation
coefficients, although high and positive, had large
standard errors and did not differ statistically from
zero. However, all traits resulted in moderately to
highly environmentally correlated. From the cross
estimates of genetic correlation coefficients between
limbs and pelvic traits (section a of table 5), the pairs
of forearm perimeter and rump length, thigh
perimeter and rump length, and thigh perimeter and
body length resulted in high and positive genetically
correlated. The rest of the estimates show large
standard errors and did not differ statistically from
zero. All cross estimates between the limbs and pelvic
sets of traits (Section b of Table 5) were moderate to
highly environmentally correlated.
Estimates of genetic and environmental correlation
coefficients among traits of the cephalic and thoracic
regions are given in table 6. Within cephalic traits
(Section a of Table 6), face length and face width were
high and positively genetically correlated. All other
estimates of genetic correlation within cephalic traits
were moderately and positively correlated but did not
differ statistically from zero. Whilst, most of them
were moderately and positively environmentally
correlated. Estimates of genetic correlation coefficients
within thoracic traits (Section b of Table 6) also had
large standard errors and did not differ statistically
from zero, but most traits were highly
environmentally correlated. The cross estimates of
genetic correlation coefficient among cephalic and
thoracic sets of traits (Section a of Table 6) show large
standard errors, and did not differ statistically from
zero, except for the pair horn length and shoulder
height that were high and negative genetically
correlated. The face width, face length, and eye
separation were moderate to high positively
environmentally correlated with all traits of the
thoracic region (Section b of Table 6).
The cross estimates of genetic correlation coefficient
among limbs with cephalic and with thoracic traits
and the abdominal perimeter are given in Section a of
Table 7. For the estimates between limbs and cephalic
sets of traits, face width were highly positively
genetically correlated with forearm perimeter, thigh
perimeter, anterior and metatarsus perimeters, and
with posterior hoof height. Cannon perimeter also was
moderately positively genetically correlated with ear
length and eye separation. For estimates between
limbs and thoracic sets of traits, the cannon perimeter
was moderate and positive genetically correlated with
all thoracic traits, but the estimates presented large
standard error, and some did not differ statistically
from zero. The pairs of chest depth and thigh
perimeter and heart girth, and forearm perimeter were
highly and positive genetically correlated. For the
cross estimates of pelvic with the cephalic and with the
thoracic sets of traits (section b of table 7), most
estimates had large standard errors and did not differ
statistically from zero. However, rump length was
highly and positively correlated with face length, face
width, eye separation and horn length, and body
length with chest width and chest height.
The cross estimates of environmental correlation
coefficients among cephalic, thoracic, limbs, and pelvic
sets of traits are given in Table 8. All cross estimates
between cephalic and pelvic sets of traits and most of
the estimates between cephalic and limbs sets of traits
(section a of table 8) were moderately to highly
positive environmentally correlated. The posterior
hoof height with horn length and with ear length, and
the pairs anterior hoof height and horn length, and
posterior hoof perimeter and ear length were
environmentally independent. Same tendencies are
observed for the cross estimates among thoracic with
limbs and with pelvic sets of traits (section b of Table
8). The posterior hoof height with chest depth, chest
height, wither height, heart girth, and with the
abdominal perimeter; the chest height with forearm
perimeter, with the anterior and metatarsus
perimeters, and with the anterior and posterior hoof
perimeters; the wither height with the posterior hoof
perimeter, and with the anterior hoof height; the
anterior hoof perimeter with chest width and with the
abdominal perimeter; and the pair scapulaischial
length and chest width were environmentally
independent. The rest pairs of traits were moderately
to highly environmentally correlated.
Pariacote et al
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
217
Table 6. Heritability and genetic and environmental correlation coefficients, on, above, and below diagonal respectively and underneath in italic the standard
error. Heritability is the arithmetic mean of all two trait combinations analyzes
Cephalic traits Thoracic traits
Traits FAL FAW EYS HOL EAL CHW CHD CHH WIH HEG ABP
Face Length, FAL 0.24 0.62 0.28 0.21 0.39 0.44 0.53 0.52 0.70 0.46 0.17
0.14 0.28 0.34 0.34 0.21 0.33 0.57 0.40 0.56 0.35 0.92
Face Width, FAW 0.47 0.23 0.01 0.14 0.03 0.42 0.99 0.02 0.11 0.14 1.00
0.09 0.12 0.38 0.36 0.22 0.34 ** 0.45 0.69 0.43 **
Eyes Separation, EYS 0.51 0.76 0.26 0.24 0.24 0.14 0.36 0.09 0.04 0.55 0.90
0.10 0.12 0.13 0.33 0.20 0.39 0.77 0.43 0.66 0.36 **
Horn Length, HOL 0.61 0.58 0.44 0.29 0.25 0.37 1.00 1.00 1.00 1.00 0.04
0.10 0.10 0.12 0.16 0.22 0.36 0.74 0.43 0.67 0.91 **
Ear Length, EAL 0.36 0.51 0.19 0.69 0.73 0.04 0.04 0.09 0.71 0.13 1.00
0.20 0.20 0.20 0.70 0.14 0.22 0.44 0.31 0.71 0.22 **
Chest Width, CHW 0.51 0.44 0.32 0.72 0.19 0.21 0.21 0.28 0.01 0.69 0.74
0.09 0.10 0.11 0.75 0.11 0.13 ** 0.59 0.84 0.34 0.88
Chest Depth, CHD 0.46 0.28 0.28 0.87 0.20 0.78 0.07 1.00 1.00 1.00 0.97
0.09 0.09 0.10 0.79 0.11 0.13 0.11 ** ** ** **
Chest Height, CHH 0.26 0.25 0.27 0.15 0.49 0.80 0.36 0.20 1.00 0.04 0.11
0.12 0.12 0.12 0.15 0.19 0.13 0.10 0.14 0.76 0.46 **
Wither Height, WIH 0.53 0.45 0.53 0.15 0.33 0.80 0.57 0.91 0.10 0.50 0.24
0.08 0.09 0.09 0.14 0.18 0.13 0.07 0.13 0.14 0.57 **
Heart Girth, HEG 0.54 0.56 0.28 0.09 0.63 0.80 0.40 0.31 0.52 0.21 0.29
0.09 0.09 0.11 0.08 0.20 0.13 0.09 0.12 0.08 0.13 0.92
Abdominal Perimeter, ABP 0.59 0.52 0.62 0.66 0.40 0.79 0.47 0.22 0.54 0.61 0.03
0.08 0.08 0.08 0.15 0.18 0.13 0.07 0.10 0.07 0.07 0.11
**Values for these cells exceed unity
a) Cephalic traits
b) Thoracic traits
Genetic and phenotypic variation in the Venezuelan Creole goat population
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
218
Table 7. Genetic correlation coefficients and underneath in italic the standard error
Cephalic traits* Thoracic traits*
Traits FAL FAW EYS HOL EAL CHW CHD CHH WIH HEG ABP
Forearm Perimeter, FAP 0.14 0.68 0.29 0.26 0.40 0.45 0.42 0.40 0.76 0.61 0.00
0.30 0.24 0.29 0.29 0.19 0.30 0.96 0.35 0.44 0.26 0.00
Thigh Perimeter, THP 0.58 0.63 0.64 0.49 0.02 0.58 1.00 0.01 0.83 0.45 0.96
0.31 0.28 0.33 0.31 0.21 0.30 0.34 0.43 0.48 0.28 0.75
Metacarpus Perimeter, MCA 0.83 0.65 0.48 0.34 0.42 0.71 0.83 0.56 0.88 0.03 1.00
0.33 0.29 0.23 0.29 0.19 0.32 0.31 0.34 0.53 0.39 **
Metatarsus Perimeter, MTA 0.90 0.68 0.38 0.27 0.44 0.79 0.87 0.79 1.00 0.81 1.00
0.32 0.29 0.38 0.42 0.22 0.31 0.35 0.31 0.41 0.31 0.87
Anterior Hoof perimeter, AHP 0.52 0.39 0.08 0.06 0.16 0.36 0.94 0.43 0.26 0.35 0.44
0.37 0.35 0.41 0.40 0.23 0.39 ** 0.45 0.92 0.38 **
Posterior Hoof perimeter, PHP 0.73 0.70 0.02 0.49 0.42 0.68 1.00 0.65 0.14 0.32 0.17
0.41 0.37 0.57 0.40 0.36 0.45 ** 0.55 ** 0.50 **
Anterior Hoof Height, AHH 0.11 0.11 0.15 0.24 0.42 0.19 0.45 0.41 0.67 0.50 1.00
0.47 0.39 0.38 0.36 0.27 0.47 0.80 0.57 ** 0.59 **
Posterior Hoof Height, PHH 1.00 0.86 0.34 0.76 0.10 0.52 0.77 1.00 1.00 0.86 0.79
0.56 0.21 0.33 0.25 0.17 0.29 0.86 0.39 0.60 0.36 **
Posterior Rump Width, PRW 1.00 1.00 0.02 0.99 0.95 0.97 0.82 1.00 1.00 1.00 1.00
0.25 ** ** ** ** ** ** ** ** ** **
Anterior Rump Width, ARW 1.00 1.00 0.30 1.00 0.94 1.00 1.00 0.60 1.00 0.93 1.00
** ** 0.98 ** ** ** ** ** ** ** **
Rump Length, RUL 0.83 0.70 0.80 0.63 0.21 0.37 0.70 0.31 0.74 0.78 0.52
0.30 0.31 0.36 0.31 0.23 0.41 0.83 0.45 0.53 0.25 0.80
Scapulaischial Length, SIL 1.00 0.88 1.00 1.00 0.62 0.77 1.00 0.47 1.00 0.84 1.00
0.94 ** 0.96 ** 0.51 ** ** 0.67 0.96 0.53 **
Body Length, BOL 0.31 1.00 0.11 0.24 0.10 0.68 0.53 0.82 0.65 0.47 0.64
0.31 ** 0.33 0.29 0.19 0.29 0.57 0.33 0.44 0.27 0.76
*See Table 6 for definition of abbreviations. **Values exceed unity
a) Limbs traits
b) Pelvic traits
Pariacote et al
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
219
Tablae 8. Environmental correlation coefficients and underneath in italic the standard error
Limbs traits* Pelvic traits*
Traits FAP THP MCA MTA AHP PHP AHH PHH PRW ARW RUL SIL BOL
Face Length, FAL 0.60 0.45 0.28 0.25 0.42 0.42 0.37 0.24 0.80 1.00 0.81 0.94 0.66
0.12 0.11 0.12 0.12 0.10 0.09 0.11 0.11 0.13 0.12 0.13 0.14 0.09
Face Width, FAW 0.28 0.34 0.71 0.22 0.43 0.31 0.40 0.13 0.29 0.60 0.82 0.96 0.68
0.12 0.11 0.14 0.12 0.10 0.10 0.10 0.14 0.10 0.08 0.13 0.14 0.08
Eyes Separation, EYS 0.34 0.24 0.70 0.08 0.52 0.48 0.21 0.06 0.58 0.94 0.81 0.93 0.50
0.14 0.12 0.14 0.13 0.11 0.10 0.13 0.14 0.09 0.13 0.13 0.14 0.11
Horn Length, HOL 0.47 0.46 0.43 0.38 0.40 0.33 0.24 0.05 0.39 0.53 0.45 0.94 0.60
0.13 0.11 0.12 0.12 0.12 0.11 0.13 0.17 0.10 0.10 0.11 0.14 0.11
Ear Length, EAL 0.13 0.50 0.24 0.15 0.34 0.29 0.62 0.12 0.40 0.64 0.38 0.32 0.61
0.23 0.23 0.21 0.22 0.21 0.19 0.22 0.24 0.18 0.21 0.20 0.19 0.24
Chest Width, CHW 0.40 0.34 0.37 0.34 0.44 0.38 0.00 0.28 0.47 1.00 0.43 0.00 0.42
0.12 0.11 0.11 0.11 0.10 0.09 0.00 0.12 0.08 0.12 0.10 0.00 0.10
Chest Depth, CHD 0.49 0.72 0.70 0.74 0.39 0.50 0.21 0.14 0.55 0.46 0.29 0.44 0.42
0.11 0.15 0.14 0.14 0.09 0.08 0.10 0.12 0.07 0.08 0.10 0.09 0.09
Chest Height, CHH 0.19 0.35 0.17 0.17 0.16 0.14 0.45 0.13 0.32 0.37 0.44 0.91 0.29
0.14 0.13 0.13 0.13 0.12 0.11 0.12 0.15 0.10 0.10 0.10 0.14 0.12
Wither Height, WIH 0.45 0.72 0.31 0.24 0.54 0.00 0.00 0.02 0.54 0.68 0.59 0.94 0.62
0.10 0.14 0.10 0.11 0.09 0.00 0.00 0.14 0.07 0.07 0.07 0.14 0.08
Heart Girth, HEG 0.45 0.55 0.53 0.25 0.47 0.48 0.43 0.01 0.48 0.67 0.50 0.92 0.64
0.11 0.10 0.11 0.12 0.10 0.09 0.11 0.14 0.08 0.07 0.09 0.14 0.09
Abdominal Perimeter, ABP 0.72 0.70 0.70 0.70 0.60 0.85 0.00 0.12 0.56 0.74 0.51 0.59 0.64
0.14 0.14 0.14 0.14 0.08 0.12 0.00 0.12 0.06 0.06 0.07 0.07 0.07
*See Table 5 for definition of abbreviations
a) Cephalic traits
b) Thoracic traits
Genetic and phenotypic variation in the Venezuelan Creole goat population
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
220
Author Contributions: Dalila D`Ascencao, Leyberth Ruiz, William Morón and Xiomara Pimentel project
administration, and collection and validation of data. Quiterio Nuñz conceptualization. Emerita Abreu and Darwin
Lugo researcher in anatomy and animal health. All authors have read and agreed to the published version of the
manuscript.
The additive or heritable fraction out of the total
phenotypic variance was moderately correlated for
limb’s traits, from low to moderately for pelvis’s traits,
from moderately to highly for cephalic traits, and from
low to moderately for the thoracic set of traits. Body
measurement traits were from moderately to highly
genetic correlated. None estimates of Creole genetic
parameters to confirm these results were found in the
literature. Results indicate that most traits evaluated
can be improved through selection, which should be
considered in any breeding program. Pariacote et al.
(2018) also found, in a sample of Creole goats, enough
additive genetic variances in productive traits to select
for. Before a final decision, more work must be done to
understand better the genetic relationship of these
traits in extensive production systems.
Aprovação do Comité de Experimentação Animal: Justificado no primeiro paragrafo da metodologia “Na época em
que este trabalho foi feito, não tínhamos o IACUC obrigatório (CEUA) no Brasil, pois foi somente a partir da
aprovação da Lei 11.794/08 que eles se tornaram obrigatórios (CEUA/UFG (IACUC) iniciado em 2011). No entanto,
buscamos desenvolver o trabalho de forma a observar o Princípio dos três R's (substituição, redução, refinamento) e
o Guia de Cuidados e Uso de Animais de Laboratório/NIHUSA.”
Funding: This research was funded by The Venezuelan National Fund for Science Technology and Innovation
(FONACIT)
Literature Cited
Conclusion
Beteta O., M. 1997. Las razas autóctonas españolas y su
participacn en los bovinos criollos iberoamericanos.
En: Utilización de Razas y Tipos Bovinos Creadas en
Latinoarica y el Caribe. Asociacn
Latinoamericana de Produccn Animal. 5 (4): 112
https://ojs.alpa.uy/index.php/ojs_files/article/view/218. Fernández, J. L., F. D. Holgado, M. E. Hernández, P. B.
Solaligue, and C. Salinas. 2014. Caracterización
morfológica del caprino Criollo del NOA I: Medidas
morfométricas e índices corporales. Rev. Agron.
Noroeste Argentina 34: 107110.
https://www.researchgate.net/publication/
318018845_Caracterizacion_morfologica_del_caprino_
Criollo_del_NOA_I_Medidas_morfometricas_e_indice
s_corporales
The variation coefficient for most traits evaluated
are similar to those reported in the cited literature
from others population of Creole in South America.
Differences in body measurements were insufficient to
discriminate the Venezuelan Creole population by
region. Outbreeding did not appear to be an adequate
strategy to make favorable changes, at least
morphologically, in the Creole goat population
studied. The additive or heritable fraction out of the
total phenotypic variance found in this study
indicated that most traits evaluated can be improved
through selection, which should be considered in any
breeding program. Most traits revealed moderate to
high genetic correlations. Further work needs to be
done to understand better the genetic relationship of
morphological traits of Creole goats under extensive
production systems.
Acknowledgements: Many institutions cooperated somehow. The Foundation for the Development of Science and
Technology of Falcon State (FUNDACITE Falcón), the Francisco de Miranda University, among others. Singular
gratitude goes to the producers.
Conflicts of Interest: The authors declare no conflict of interest.
Boldman, K. G., L. A. Kriese, L. D. Van Vleck, C. P. Van
Tassell, and S. D. Kachman. 1995. A Manual for Use of
MTDFREML. A Set of Programs to Obtain Estimates
of Variances and Covariances (draft). USDA, ARS,
Lincoln, NE.
ChinchillaVargas, J., M. J. WoodwardGreene, C. P.
VanTassell, C. WanduiMasiga, and M. F.
Rothschild. 2018. Predicting live weight of rural
African goats using body measurements. Livestock
Research for Rural Development 30: 18.
http://www.lrrd.org/lrrd30/7/
josue30123.html#:~:text=All%20the%20body%20mea
surements%20used,of%200.85%20and%200.83%2C%
20respectively.
Pariacote et al
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
221
García B., O., B. E. García, J. Bravo, and E. Bradford
1996. Analyses of a crossbreeding experiment using
Creole and imported breeds. VII. Milk yield and
evaluation of breed groups. Rev. Fac. Agron. (LUZ) 13:
611 625. https://produccioncientificaluz.org/index.php/
agronomia/article/view/26099
Pariacote, F. A. 2000. Guided program of investigation
to the development of the goat sector in Venezuela.
Proceeding 7 International Conference on Goats,
Tome II: 915  917.
GarciaPeniche, T. B., H. H. Montaldo, M. Valencia
Posadas, G. R. Wiggans, S. M. Hubbard, J. A. Torres
Vazquez, and L Shepard. 2012. Breed differences over
time and heritability estimates for production and
reproduction traits of dairy goats in the United States. J.
Dairy Sci. 95: 27072017.
https://doi.org/10.3168/jds.20114714
Gómez Urviola, N. C. 2013. Caracterización estructural,
morfológica y getica de la población de cabras
autóctonas de la región de Apurimac del Perú. Tesis
doctoral. Universidad Aunoma de Barcelona, Facultad
de Veterinaria, Departamento de Ciencia Animal y de los
Alimentos.
Hodges, J. 2000. Conservation of farm animals
biodiversity: a review of past, present and future. In
Proceeding of the 5th Global Conference on the
Conservation of Domestic Animal Genetic Resources;
Brasilia, November 20 24.
Lanari, M. R. 2003. Variación y diferenciación genética
y fenotípica de la Cabra Criolla Neuquina en relación con
su sistema rural campesino. Tesis doctoral. Universidad
del Comahue, Centro Regional Universitario Bariloche.
Lanari, M. R., N. Giovannini, D. O. Maizon, C. Deza, D.
O. Bedotti, S. A. de la RosaCarbajal, T. A. Vera, R. A.
Ricarte, and C. A. Mezzadra. 2019. Creole goat breeds
diversity in Argentina. Actas Iberoamericanas de
Conservación Animal 13: 2840.
https://aicarevista.jimdo.com/app/download/18078139025/
AICA_Vol13_Trabajo007.pdf?t=1635175165
Martínez R., R. D., G. Torres Hernández, and, S.
Martínez Hernández. 2014. Phenotypic, productive and
reproductive characterization of the white creole goat of the
"Filo Mayor" from the Sierra Madre del Sur in Guerrero.
Nova Scientia 11: 111.
https://www.scielo.org.mx/scielo.php?pid=S2007
07052014000100003&script=sci_abstract&tlng=en
Mdladla, K., E. F. Dzomba, and, F. C. Muchadeyi. 2017.
Characterization of the village goat production
systems in the rural communities of the Eastern
Cape, KwaZuluNatal, Limpopo and North West
Provinces of South Africa. Trop Anim Health Prod 49: 515
527. https://doi.org/10.1007/s112500171223x
Pariacote, F.A. 1992. Productivity of goat native, Alpine
and Nubian breeds and their crosses in Venezuela. Arch.
Zootec. 41: 555562.
Pariacote, F. A. 2007a. Caprinos. En: Los Recursos
Zoogenéticos de Venezuela. GonzálezJiménez E y F. Bisbal
(Eds.) Ministerio del Poder Popular para el Ambiente,
Caracas, Venezuela, pp 73 91. ISBN: 980041312X
Pariacote, F. A. 2007b. Sustainable development of
animal production systems and the local genetic
resources in Iberian America: Venezuelan case.
Proceeding of the VIII IberiaAmerican Symposium
on Conservation and Use of Zoogenetic Resources.
CYTED Red XIIH and Quevedo Ecuador State
Technical University, Quevedo, Ecuador, pp 22  35.
Pariacote, F. A. 2009. Stage of development of the goat
in Iberian America. Proceeding of the X Iberian
American Symposium on the Conservation and
Utilization of the Zoogenetic Resources. Red
CONBIAND; Palmira, Colombia, pp 11  13
Pariacote F. A. 2012. How to estimate additive and
nonadditive genetic effects in crossbred herds by
(co)variance. XI International Conference on Goats,
International Goat Association, IGA. Gran Canaria,
Spain. Book of abstracts p 214.
Pariacote, F. A., L. Ruiz, and X. Pimentel. 2004.
Cutaneous appendixes in the Venezuelan creole goat
population. Zootecnia Trop. 22: 1 – 5
http://ve.scielo.org/scielo.php?
script=sci_abstract&pid=S0798
72692004000200010&lng=en&nrm=iso&tlng=en
Pariacote, F. A., D. D`Ascencao, L. E. Ruiz C., W.
Morón, and X. Pimentel. 2018. Productive and
Reproductive Capacity and Characteristics of the
Thoracic Region for the Venezuelan Creole Goat.
Proceedings of the World Congress on Genetics
Applied to Livestock Production; New Zealand, pp
928934
Pariacote, F. A., D. D’Ancescao, W. Moron, RToledo,
C. Borges, R. Zarraga, and I. Monasterio. 1999.
Program for the genetic improvement of the native
goat population. II Meeting of the Goat National
Program, FUNDACITE Falco Coro, Mem. 2: 56 63.
Ponce, J. L., E. Soni Guillermo, B. C. PinedaBurgos, P.
E. HerndezRuiz, E. C. GarcíaGonzález, E.
ValenciaFranco, P. I. RomeroRodguez, J. C.
RodríguezCastillo. 2019. Morphostructural
characterization of the Creole goat (Capra hircus) of the
municipality of Cuajinicuilapa, on the Costa Chica of
Guerrero, Mexico. Jornal of Science 3: 84  88. https://
medcraveonline.com/medcrave.org/index.php/OAJS/
article/view/19164
Genetic and phenotypic variation in the Venezuelan Creole goat population
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
222
Rodero, A., J. V. Delgado, and E. Rodero. 1992.
Primitive andalusian livestock and their implication
in the discovery of America. Arch Zootec.
1992(Extra): 383  400.
Scherf, B. D. 2000. Using WWLDAD:3. World Watch
List for Domestic Animal Diversity, 3rd ed, FAO. pp 3
36. ISBN: 9251045119
ISSNL 10221301. Archivos Latinoamericanos de Producción Animal. 2023. 31 (2): 207  222
Ruiz, L.E., F. A. Pariacote, and X. Pimentel. 2002. Coat
Color in Goats by Breed Groups and Geographical
Areas. Preliminary Results. Revista Científica 12: 405
407. https://produccioncientificaluz.org/index.php/
cientifica/article/view/14883
SAS. SAS Institute Inc. Cary, NC, USA. 2016
VivianaDeza, M. C. 2007. Caracterización de caprinos
criollos del noroeste de rdoba mediante el uso de
caracteres morfoestructurales y polimorfismos
protnicos. Su relación con aptitud productiva. Tesis
of Magister, Universidad Nacional de Córdoba,
Facultad de Ciencias Agropecuarias.
Von Keyserlingk, M. A. G., N. P. Martin, E. Kebreab, K.
F. Knowlton, R. J. Grant, M. Stephenson, C. J. Sniffen, J.
P. Harner III, A. D. Wright, and S. I. Smith. 2013.
Invited review: Sustainability of the US dairy industry.
J. Dairy Sci. 96: 5405 5425.
https://doi.org/10.3168/jds.20126354
Pariacote et al